Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Constant term of smooth $ H_\psi$-spherical functions on a reductive $ p$-adic group


Author: Patrick Delorme
Journal: Trans. Amer. Math. Soc. 362 (2010), 933-955
MSC (2000): Primary 22E50
Published electronically: September 17, 2009
MathSciNet review: 2551511
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \psi$ be a smooth character of a closed subgroup, $ H$, of a reductive $ p$-adic group $ G$. If $ P$ is a parabolic subgroup of $ G$ such that $ PH$ is open in $ G$, we define the constant term of every smooth function on $ G$ which transforms by $ \psi$ under the right action of $ G$. The example of mixed models is given: it includes symmetric spaces and Whittaker models. In this case a notion of cuspidal function is defined and studied. It leads to finiteness theorems.


References [Enhancements On Off] (What's this?)

  • 1. Bernstein, J., Second adjointness theorem for representations of reductive $ p$-adic groups, unpublished manuscript.
  • 2. Yves Benoist and Hee Oh, Polar decomposition for 𝑝-adic symmetric spaces, Int. Math. Res. Not. IMRN 24 (2007), Art. ID rnm121, 20. MR 2377008, 10.1093/imrn/rnm121
  • 3. Philippe Blanc and Patrick Delorme, Vecteurs distributions 𝐻-invariants de représentations induites, pour un espace symétrique réductif 𝑝-adique 𝐺/𝐻, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 213–261 (French, with English and French summaries). MR 2401221
  • 4. Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
  • 5. Jean-Luc Brylinski and Patrick Delorme, Vecteurs distributions 𝐻-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math. 109 (1992), no. 3, 619–664 (French). MR 1176208, 10.1007/BF01232043
  • 6. Colin J. Bushnell, Representations of reductive 𝑝-adic groups: localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001), no. 2, 364–386. MR 1810135, 10.1017/S0024610700001885
  • 7. Colin J. Bushnell and Guy Henniart, Generalized Whittaker models and the Bernstein center, Amer. J. Math. 125 (2003), no. 3, 513–547. MR 1981032
  • 8. Casselman, W., Introduction to the theory of admissible representations of $ p$-adic reductive groups, http://www.math.ubc.ca/$ \sim$ cass/research.html.
  • 9. W. Casselman and J. Shalika, The unramified principal series of 𝑝-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
  • 10. Patrick Delorme, Espace des coefficients de représentations admissibles d’un groupe réductif 𝑝-adique, Noncommutative harmonic analysis, Progr. Math., vol. 220, Birkhäuser Boston, Boston, MA, 2004, pp. 131–176 (French). MR 2036570
  • 11. Delorme, P., Sécherre, V., An analogue of the Cartan decomposition for $ p$-adic reductive symmetric spaces, arXiv:math/0612545.
  • 12. Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR 0399356
  • 13. A. G. Helminck and G. F. Helminck, A class of parabolic 𝑘-subgroups associated with symmetric 𝑘-varieties, Trans. Amer. Math. Soc. 350 (1998), no. 11, 4669–4691. MR 1443876, 10.1090/S0002-9947-98-02029-7
  • 14. A. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), no. 1, 26–96. MR 1215304, 10.1006/aima.1993.1019
  • 15. Kato, S., Takano, K., Subrepresentation theorem for $ p$-adic symmetric spaces arXiv:0706.0567, to appear in Int. Math. Res. Not.
  • 16. Nathalie Lagier, Terme constant de fonctions sur un espace symétrique réductif 𝑝-adique, J. Funct. Anal. 254 (2008), no. 4, 1088–1145 (French, with English and French summaries). MR 2381204, 10.1016/j.jfa.2007.07.012
  • 17. Omer Offen and Eitan Sayag, Uniqueness and disjointness of Klyachko models, J. Funct. Anal. 254 (2008), no. 11, 2846–2865. MR 2414223, 10.1016/j.jfa.2008.01.004
  • 18. J. Tits, Reductive groups over local fields, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
  • 19. J.-L. Waldspurger, La formule de Plancherel pour les groupes 𝑝-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, 10.1017/S1474748003000082

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E50

Retrieve articles in all journals with MSC (2000): 22E50


Additional Information

Patrick Delorme
Affiliation: Institut de Mathématiques de Luminy, UMR 6206 CNRS, Université de la Méditerranée, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
Email: delorme@iml.univ-mrs.fr

DOI: http://dx.doi.org/10.1090/S0002-9947-09-04925-3
Keywords: Reductive group, non-Archimedean local field, symmetric space, Whittaker model
Received by editor(s): January 1, 2011
Received by editor(s) in revised form: January 1, 2008
Published electronically: September 17, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.