Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

The Leech lattice $ \Lambda$ and the Conway group $ \cdot {O}$ revisited


Authors: John N. Bray and Robert T. Curtis
Journal: Trans. Amer. Math. Soc. 362 (2010), 1351-1369
MSC (2000): Primary 20D08; Secondary 20F05
DOI: https://doi.org/10.1090/S0002-9947-09-04726-6
Published electronically: October 20, 2009
MathSciNet review: 2563732
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new, concise definition of the Conway group $ \cdot {O}$ as follows. The Mathieu group $ \mathrm{M}_{24}$ acts quintuply transitively on 24 letters and so acts transitively (but imprimitively) on the set of $ \left({24}\atop{4} \right)$ tetrads. We use this action to define a progenitor $ P$ of shape $ 2^{\star \left( 24 \atop 4 \right)}:\mathrm{M}_{24}$; that is, a free product of cyclic groups of order 2 extended by a group of permutations of the involutory generators. A simple lemma leads us directly to an easily described, short relator, and factoring $ P$ by this relator results in $ \cdot {O}$. Consideration of the lowest dimension in which $ \cdot {O}$ can act faithfully produces Conway's elements $ \xi_T$ and the 24-dimensional real, orthogonal representation. The Leech lattice is obtained as the set of images under $ \cdot {O}$ of the integral vectors in $ {\mathbb{R}}_{24}$.


References [Enhancements On Off] (What's this?)

  • 1. Wieb Bosma and John Cannon. Handbook of Functions. Sydney (March 16, 1994).
  • 2. John N. Bray and Robert T. Curtis. Double coset enumeration of symmetrically generated groups. J. Group Theory 7 (2004), 167-185 . MR 2049015 (2005b:20059)
  • 3. John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker and Robert A. Wilson. An ATLAS of Finite Groups. Oxford University Press (1985). MR 827219 (88g:20025)
  • 4. J. H. Conway. A perfect group of order 8, 315, 553, 613, 086, 720, 000 and the sporadic simple groups. Proc. Nat. Acad. Sci. 61 (1968), 398-400. MR 0237634 (38:5915)
  • 5. J. H. Conway. A group of order 8, 315, 553, 613, 086, 720, 000. Bull. London Math. Soc. 1 (1969), 79-88. MR 0248216 (40:1470)
  • 6. J. H. Conway. A characterization of Leech's lattice, Invent. Math. 7 (1969), 137-142. MR 0245518 (39:6824)
  • 7. J. H. Conway. Hexacode and tetracode--MOG and MINIMOG. In Computational Group Theory, Ed. M. D. Atkinson (Academic Press, 1984), pp. 359-365. MR 760670 (86b:94020)
  • 8. J. H. Conway. Three lectures on exceptional groups. In Finite Simple Groups (Academic Press, 1971), pp. 215-247. MR 0338152 (49:2918)
  • 9. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290 (Springer-Verlag, 1988). MR 920369 (89a:11067)
  • 10. R. T. Curtis. A new combinatorial approach to $ \mathrm{M}_{24}$. Math. Proc. Cambridge Phil. Soc. 79 (1976), 25-42 MR 0399247 (53:3098)
  • 11. R. T. Curtis. Symmetric Presentation I. In Groups, Combinatorics and Geometry, Ed. M.W. Liebeck and J. Saxl (Cambridge U.P. 1990), LMS Lecture Note Series 165, pp. 380-396. MR 1200276 (94b:20038)
  • 12. R. T. Curtis, A. M. A. Hammas, and J. N. Bray. A systematic approach to symmetric presentations. I. Involutory generators. Math. Proc. Cambridge Phil. Soc. 119 (1996), 23-34. MR 1356154 (96k:20058)
  • 13. Alexander A. Ivanov, Dmitrii V. Pasechnik and Sergey V. Shpectorov. Non-abelian representations of some sporadic geometries. J. Algebra 181 (1996), 523-557. MR 1383479 (97b:20016)
  • 14. J. Leech. Notes of sphere packings, CJM 19 (1967), 251-267. MR 0209983 (35:878)
  • 15. J. A. Todd. A representation of the Mathieu group $ \mathrm{M}_{24}$ as a collineation group, Anc. Mat. Para Appl. Ser. IV 71 (1966), 199-238. MR 0202854 (34:2713)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20D08, 20F05

Retrieve articles in all journals with MSC (2000): 20D08, 20F05


Additional Information

John N. Bray
Affiliation: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
Email: j.n.bray@qmul.ac.uk

Robert T. Curtis
Affiliation: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Email: r.t.curtis@bham.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-09-04726-6
Keywords: Conway group, symmetric generation
Received by editor(s): November 23, 2007
Received by editor(s) in revised form: January 7, 2008
Published electronically: October 20, 2009
Dedicated: Dedicated to John Horton Conway as he approaches his seventieth birthday.
Article copyright: © Copyright 2009 by the authors

American Mathematical Society