Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The lower bound of the $ \lowercase{w}$-indices of surface links via quandle cocycle invariants


Author: Masahide Iwakiri
Journal: Trans. Amer. Math. Soc. 362 (2010), 1189-1210
MSC (2000): Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9947-09-04769-2
Published electronically: September 23, 2009
MathSciNet review: 2563726
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ w$-index of a surface link $ F$ is the minimal number of the triple points of surface braids representing $ F$. In this paper, for a given $ 3$-cocycle, we consider the minimal number of the $ w$-indices of surface links whose quandle cocycle invariants associated with $ f$ are non-trivial, and denote it $ \omega(f)$. In particular, we show that $ \omega(\theta_3)=6$ and $ \omega(\theta_p)\geq 7$, where $ \theta_n$ is Mochizuki's $ 3$-cocycle of the dihedral quandle of order $ n$ and $ p$ is an odd prime integer $ \not=3$. As a consequence, for a given non-negative integer $ g$, there are surface knots with genus $ g$ with the $ w$-index $ 6$.


References [Enhancements On Off] (What's this?)

  • 1. S. Asami and S. Satoh, An infinite family of non-invertible surfaces in $ 4$-space, Bull. London Math. Soc. 37 (2005), 285-296. MR 2119028 (2005k:57044)
  • 2. J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc., 355 (2003), 3947-3989. MR 1990571 (2005b:57048)
  • 3. J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Computations of quandle cocycle invariants of knotted curves and surfaces, Adv. in Math., 157 (2001), 36-94. MR 1808844 (2001m:57009)
  • 4. J. S. Carter, M. Saito and S. Satoh, Ribbon concordance of surface-knots via quandle cocycle invariants, J. Aust. Math. Soc. 80 (2006), 131-147. MR 2212320 (2006k:57066)
  • 5. R. Fenn, C. Rourke and B. Sanderson, James bundles and applications, Proc. London Math. Soc. (3) 89 (2004), 217-240. MR 2063665 (2005d:55006)
  • 6. I. Hasegawa, The lower bound of the $ w$-indices of non-ribbon surface-links, Osaka J. Math., 41 (2004), 891-909. MR 2116344 (2005k:57045)
  • 7. E. Hatakenaka, An estimate of the triple point numbers of surface-knots by quandle cocycle invariants, Topology Appl. 139 (2004), 129-144. MR 2051101 (2005d:57036)
  • 8. S. Kamada, Surfaces in $ R\sp 4$ of braid index three are ribbon, J. Knot Theory Ramifications, 1 (1992), 137-160. MR 1164113 (93h:57039)
  • 9. S. Kamada, $ 2$-dimensional braids and chart descriptions, Topics in Knot Theory, 277-287, NATO ASI series C, 399 (Erzurum/Turkey 1992), Kluwer Academic Publishers, 1992. MR 1257915
  • 10. S. Kamada, A characterization of groups of closed orientable surfaces in $ 4$-space, Topology, 33 (1994), 113-122. MR 1259518 (95a:57002)
  • 11. S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications, 4 (1996), 517-529. MR 1406718 (97j:57009)
  • 12. S. Kamada, Braid and knot theory in dimension four, Math. Surveys Monogr. 95, Amer. Math. Soc., 2002. MR 1900979 (2003d:57050)
  • 13. T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J. Pure Appl. Algebra 179 (2003), 287-330. MR 1960136 (2004b:55013)
  • 14. T. Nagase, A. Shima, Properties of minimal charts and their applications. I, J. Math. Sci. Univ. Tokyo 14 (2007), 69-97. MR 2320385 (2008c:57040)
  • 15. M. Ochiai, T. Nagase, A. Shima, There exists no minimal $ n$-chart with five white vertices, Proc. Sch. Sci. Tokai Univ. 40 (2005), 1-18. MR 2138333 (2006b:57035)
  • 16. S. Satoh, A. Shima, The $ 2$-twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc. 356 (2004), 1007-1024. MR 1984465 (2004k:57032)
  • 17. S. Satoh, A. Shima, Triple point numbers and quandle cocycle invariants of knotted surfaces in $ 4$-space, New Zealand J. Math. 34 (2005), 71-79. MR 2141479 (2006e:57031)
  • 18. O. Ya. Viro, Lecture given at Osaka City University, September, 1990.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57Q45

Retrieve articles in all journals with MSC (2000): 57Q45


Additional Information

Masahide Iwakiri
Affiliation: Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, Japan
Email: iwakiri@sci.osaka-cu.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-09-04769-2
Received by editor(s): June 4, 2007
Published electronically: September 23, 2009
Additional Notes: This paper was supported by JSPS Research Fellowships for Young Scientists and the 21 COE program “Constitution of wide-angle mathematical basis focused on knots”.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society