Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted averages of modular $ L$-values


Authors: Andrew Knightly and Charles Li
Journal: Trans. Amer. Math. Soc. 362 (2010), 1423-1443
MSC (2000): Primary 11F11, 11F30, 11F67, 11F70
DOI: https://doi.org/10.1090/S0002-9947-09-04923-X
Published electronically: September 25, 2009
MathSciNet review: 2563735
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using an explicit relative trace formula on $ \operatorname{GL}(2)$, we derive a formula for averages of modular $ L$-values in the critical strip, weighting by Fourier coefficients, Hecke eigenvalues, and Petersson norms. As an application we show that a GRH holds for these averages as the weight or the level goes to $ \infty$. We also use the formula to give explicit zero-free regions of the form $ \vert\operatorname{Im}(s)\vert\le \tau_0$ for some particular modular $ L$-functions.


References [Enhancements On Off] (What's this?)

  • [Ak] A. Akbary, Non-vanishing of weight $ k$ modular $ L$-functions with large level, J. Ramanujan Math. Soc. 14 (1999), no. 1, 37-54. MR 1700874 (2000e:11067)
  • [AS] N. Abramowitz and I. Stegun, editors, Handbook of mathematical functions, Dover Publications, New York, 1965.
  • [Du] W. Duke, The critical order of vanishing of automorphic $ L$-functions with large level, Invent. Math. 119 (1995), no. 1, 165-174. MR 1309975 (95k:11075)
  • [El] J. Ellenberg, On the error term in Duke's estimate for the average special value of $ L$-functions, Canad. Math. Bull. 48 (2005), no. 4, 535-546. MR 2176151 (2007e:11057)
  • [FW] B. Feigon and D. Whitehouse, Averages of central $ L$-values of Hilbert modular forms with an application to subconvexity, preprint (2007).
  • [Ka] Y. Kamiya, Certain mean values and non-vanishing of automorphic $ L$-functions with large level, Acta Arith. 93 (2000), no. 2, 157-176. MR 1757188 (2001h:11066)
  • [KL1] A. Knightly and C. Li, A relative trace formula proof of the Petersson trace formula, Acta Arith. 122 (2006), no. 3, 297-313. MR 2239919 (2007d:11042)
  • [KL2] -, Traces of Hecke operators, Mathematical Surveys and Monographs, 133, Amer. Math. Soc., 2006. MR 2273356 (2008g:11090)
  • [Ko] W. Kohnen, Nonvanishing of Hecke $ L$-functions associated to cusp forms inside the critical strip, J. Number Theory 67 (1997), no. 2, 182-189. MR 1486497 (98j:11037)
  • [Li] C. Li, Kuznietsov trace formula and weighted distribution of Hecke eigenvalues, J. Number Theory 104 (2004), no. 1, 177-192. MR 2021634 (2004k:11059)
  • [Mi] P. Michel, Analytic number theory and families of automorphic $ L$-functions, in: Automorphic forms and applications, 181-295, IAS/Park City Math. Ser., 12, Amer. Math. Soc., Providence, RI, 2007. MR 2331346 (2008m:11104)
  • [RaRo] D. Ramakrishnan and J. Rogawski, Average values of modular $ L$-series via the relative trace formula, Pure Appl. Math. Q. 1 (2005), no. 4, 701-735. MR 2200997 (2007c:11096)
  • [Ro] E. Royer, Facteurs $ \mathbf{Q}$-simples de $ J_0(N)$ de grande dimension et de grand rang, Bull. Soc. Math. France 128 (2000), no. 2, 219-248. MR 1772442 (2001j:11041)
  • [Ser] J.-P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke $ T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, pp. 75-102. MR 1396897 (97h:11048)
  • [Sh] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1971. MR 0314766 (47:3318)
  • [Sl] L. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960. MR 0107026 (21:5753)
  • [Sp] J. Spouge, Computation of the gamma, digamma, and trigamma functions, SIAM J. Numer. Anal. 31 (1994), no. 3, 931-944. MR 1275121 (95g:33002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11F11, 11F30, 11F67, 11F70

Retrieve articles in all journals with MSC (2000): 11F11, 11F30, 11F67, 11F70


Additional Information

Andrew Knightly
Affiliation: Department of Mathematics and Statistics, Neville Hall, University of Maine, Orono, Maine 04469-5752

Charles Li
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

DOI: https://doi.org/10.1090/S0002-9947-09-04923-X
Received by editor(s): January 31, 2008
Published electronically: September 25, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society