Universal relations on stable map spaces in genus zero

Authors:
Anca M. Mustata and Andrei Mustata

Journal:
Trans. Amer. Math. Soc. **362** (2010), 1699-1720

MSC (2000):
Primary 14N35, 14F25

DOI:
https://doi.org/10.1090/S0002-9947-09-04606-6

Published electronically:
October 28, 2009

MathSciNet review:
2574874

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a factorization for the map between moduli spaces of stable maps which forgets one marked point. This leads to a study of universal relations in the cohomology of stable map spaces in genus zero.

**[BO]**K. Behrend, A. O'Halloran, On the cohomology of stable map spaces, in*Invent. Math.***154**(2003), no. 2, 385-450. MR**2013785 (2004k:14002)****[CHS]**I. Coskun, J. Harris, J. M. Starr, The ample cone of the Kontsevich moduli space, preprint.**[C1]**J. Cox, An additive basis for the cohomology ring of , in math.AG/0501322**[C2]**J. Cox, A presentation for the cohomology ring in math.AG/0505112**[FP]**W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology in*Algebraic geometry, Santa Cruz 1995*, pages 45-96, volume**62**of Proc. Symp. Pure Math., Amer. Math. Soc., 1997. MR**1492534 (98m:14025)****[GP]**E. Getzler, R. Pandharipande, The Betti numbers of , in math.AG/0502525**[Has]**B. Hassett, Moduli spaces of weighted pointed stable curves. Adv. Math.**173**(2003), no. 2, 316-352. MR**1957831 (2004b:14040)****[Ka]**M. M. Kapranov, Chow quotients of Grassmannians. I, in I. M. Gelfand Seminar, 29-110, Adv. Soviet Math.,**16**, Part 2, Amer. Math. Soc., Providence, RI, 1993. MR**1237834 (95g:14053)****[Ke]**S. Keel, Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc.**330**(1992), page 545-574. MR**1034665 (92f:14003)****[KK]**A. Kabanov, T. Kimura, A change of coordinates on the large phase space of quantum cohomology. Comm. Math. Phys.**217**(2001), no. 1, 107-126. MR**1815027 (2002d:14092)****[LP]**Y.-P. Lee, R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum -theory, Amer. J. Math.**126**(2004), no. 6, 1367-1379. MR**2102400 (2006c:14082)****[MM1]**A. Mustata, A. Mustata, Intermediate moduli spaces of stable maps, math.AG/0409569, Invent. Math.**167**(2007), no. 1, 47-90 MR**2264804 (2008j:14024)****[MM2]**A. Mustata, A. Mustata, The Chow ring of , math.AG/0507464**[MM3]**A. Mustata, A. Mustata, Tautological rings of stable map spaces, preprint.**[MM4]**A. Mustata, A. Mustata, On Chow quotients, in preparation.**[O1]**D. Oprea, The tautological rings of the moduli spaces of stable maps, in math.AG/0404280**[Pan]**R. Pandharipande, Intersection of -divisors on Kontsevich's Moduli Space and enumerative geometry, Trans. Amer. Math. Soc.**351**(1999), no. 4, 1481-1505. MR**1407707 (99f:14068)****[Par]**A. Parker, An Elementary GIT Construction of the Moduli Space of Stable Maps, in math.AG/0604092**[W]**E. Witten, Two-dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge, MA, 1990), 243-310, Lehigh Univ., Bethlehem, PA, 1991. MR**1144529 (93e:32028)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14N35,
14F25

Retrieve articles in all journals with MSC (2000): 14N35, 14F25

Additional Information

**Anca M. Mustata**

Affiliation:
School of Mathematical Sciences, 153 Aras Na Laoi, University College Cork, Cork, Ireland

Email:
A.Mustata@ucc.ie

**Andrei Mustata**

Affiliation:
School of Mathematical Sciences, 153 Aras Na Laoi, University College Cork, Cork, Ireland

DOI:
https://doi.org/10.1090/S0002-9947-09-04606-6

Received by editor(s):
February 1, 2007

Published electronically:
October 28, 2009

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.