Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence and non-existence results for a logistic-type equation on manifolds


Authors: Stefano Pigola, Marco Rigoli and Alberto G. Setti
Journal: Trans. Amer. Math. Soc. 362 (2010), 1907-1936
MSC (2000): Primary 58J05, 58J50; Secondary 35J60, 35P05, 53C21
DOI: https://doi.org/10.1090/S0002-9947-09-04752-7
Published electronically: November 13, 2009
MathSciNet review: 2574881
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the steady state solutions of a generalized logistic-type equation on a complete Riemannian manifold. We provide sufficient conditions for existence, respectively non-existence of positive solutions, which depend on the relative size of the coefficients and their mutual interaction with the geometry of the manifold, which is mostly taken into account by means of conditions on the volume growth of geodesic balls.


References [Enhancements On Off] (What's this?)

  • [A] T. Aubin, Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. MR 1636569 (99i:58001)
  • [AB] G.A. Afrouzi, K.J. Brown, On a diffusion logistic equation, J. Math. Analysis and Appl. 225 (1998), 326-339. MR 1639260 (99g:35130)
  • [AW] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Math. 30 (1978), 33-76. MR 511740 (80a:35013)
  • [BdCS] P. Bérard, M. do Carmo, W. Santos, The index of constant mean curvature surfaces in hyperbolic $ 3$-space, Math. Z. 224 (1997), 313-326. MR 1431198 (98a:53008)
  • [BR] B. Bianchini, M. Rigoli, Nonexistence and uniqueness of positive solutions of Yamabe type equations on nonpositively curved manifolds, Trans. Amer. Math. Soc. 349 (1997), 4753-4774. MR 1401514 (98c:53048)
  • [BRS1] L. Brandolini, M. Rigoli, A.G. Setti, Positive solutions of Yamabe-type equations on the Heisenberg group, Duke Math. J. 91 (1998), 241-296. MR 1600582 (99d:35027)
  • [BRS2] L. Brandolini, M. Rigoli, A.G. Setti, Positive solutions of Yamabe type equations on complete manifolds and applications, Jour. Funct. Anal. 160 (1998), 176-222. MR 1658696 (2000a:35051)
  • [Ch] I. Chavel, Riemannian Geometry - A Modern Introduction. Cambridge University Press, Cambridge, 1993. MR 1271141 (95j:53001)
  • [DM1] Y. Du, L. Ma, Logistic type equations on $ \mathbb{R}^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. 64 (2001), 107-124. MR 1840774 (2002d:35089)
  • [DM2] Y. Du, L. Ma, Positive solutions of an elliptic partial differential equation on $ \mathbb{R}^N$, J. Math. Anal. Appl. 271 (2002) 409-425. MR 1923643 (2003f:35106)
  • [F] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin, Heidelberg, New York, 1969. MR 0257325 (41:1976)
  • [FCS] D. Fischer-Colbrie, R. Schoen, The structure of complete stable minimal surfaces in $ 3$-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. XXXIII (1980), 199-211. MR 562550 (81i:53044)
  • [GT] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [GW] R.E. Greene, H.H. Wu, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Mathematics 699, Springer-Verlag, Berlin 1979. MR 521983 (81a:53002)
  • [HK] P. Hess, T. Kato, On some nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), 999-1030. MR 588690 (81m:35102)
  • [J] Z. Jin, Principal eigenvalues with indefinite weight functions, Trans. Amer. Math. Soc. 349 (1997), 1945-1959. MR 1389781 (97h:35056)
  • [K] J.L. Kazdan, Prescribing the Curvature of a Riemannian Manifold, CBMS 57, AMS, Providence, R.I., 1985. MR 787227 (86h:53001)
  • [LTY] P. Li, L.-F. Tam, D. Yang, On the elliptic equation $ \Delta u + k u - K u^p$ on complete Riemannian manifolds and their geometric applications, Trans. Amer. Math. Soc. 350 (1998), 1045-1078. MR 1407497 (98e:58175)
  • [MM] A. Manes, A.M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Bollettino U.M.I. 7 (1973), 285-301. MR 0344663 (49:9402)
  • [MP] W.F. Moss, J. Pieperbrink, Positive solutions of elliptic equations, Pacific J. Math 75 (1978), 219-226. MR 500041 (80b:35008)
  • [NST] L. Ni, Y. Shi, L.F. Tam, Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds, J. Diff. Geom. 57 (2001), 339-388. MR 1879230 (2002j:53042)
  • [PRS1] S. Pigola, M. Rigoli, A.G. Setti, Volume growth, ``a priori'' estimates, and geometric applications, Geom. Funct. Anal., 13 (2003), 1302-1328. MR 2033840 (2004k:53051)
  • [PRS2] S. Pigola, M. Rigoli, A.G. Setti, Maximum principle on Riemannian manifolds and applications, Memoirs of the AMS 174 no. 822, 2005. MR 2116555 (2006b:53048)
  • [PRS3] S. Pigola, M. Rigoli, A.G. Setti, Vanishing theorems on Riemannian manifolds and geometric applications, Jour. Funct. Anal. 229 (2005), 424-461. MR 2182595 (2006k:53055)
  • [PRS4] S. Pigola, M. Rigoli, A.G. Setti, A finiteness theorem for the space of $ L^p$-harmonic sections, Revista Mat. Iberoamericana 24 (2008), 91-116. MR 2435968
  • [RS] M. Rigoli and A.G. Setti, Liouville-type theorems for $ \varphi$-subharmonic functions, Rev. Mat. Iberoamericana, 17 (2001), 471-520. MR 1900893 (2003b:58049)
  • [Y] S.T. Yau, Some function theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. MR 0417452 (54:5502)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58J05, 58J50, 35J60, 35P05, 53C21

Retrieve articles in all journals with MSC (2000): 58J05, 58J50, 35J60, 35P05, 53C21


Additional Information

Stefano Pigola
Affiliation: Dipartimento di Fisica e Matematica, Università dell’Insubria - Como, via Valleggio 11, I-22100 Como, Italy
Email: stefano.pigola@uninsubria.it

Marco Rigoli
Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133 Milano, Italy
Email: rigoli@mat.unimi.it

Alberto G. Setti
Affiliation: Dipartimento di Fisica e Matematica, Università dell’Insubria - Como, via Valleggio 11, I-22100 Como, Italy
Email: alberto.setti@uninsubria.it

DOI: https://doi.org/10.1090/S0002-9947-09-04752-7
Keywords: Nonlinear elliptic equations, existence and non-existence results, eigenvalues, Riemannian manifolds.
Received by editor(s): February 17, 2006
Received by editor(s) in revised form: September 7, 2007
Published electronically: November 13, 2009
Dedicated: Dedicated to the memory of Franca Burrone Rigoli
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society