Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Christoffel functions on curves and domains
HTML articles powered by AMS MathViewer

by Vilmos Totik PDF
Trans. Amer. Math. Soc. 362 (2010), 2053-2087 Request permission

Abstract:

Asymptotics for Christoffel functions are established for measures supported on unions of smooth Jordan curves and for area-like measures on unions of smooth Jordan domains. For example, in the former case $n$ times the $n$-th Christoffel function tends to the Radon-Nikodym derivative of the measure with respect to the equilibrium distribution of the support of the measure.
References
  • T. Carleman, Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. Mat. Astr. Fys., 17(1923), 215–244.
  • Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
  • Wilhelm Blaschke, Kreis und Kugel, Walter de Gruyter & Co., Berlin, 1956 (German). 2te Aufl. MR 0077958, DOI 10.1515/9783111506937
  • M. Findley, Universality for regular measures satisfying Szegő’s condition locally, J. Approx. Theory, 155, 136–154.
  • G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
  • Leonid Golinskii, The Christoffel function for orthogonal polynomials on a circular arc, J. Approx. Theory 101 (1999), no. 2, 165–174. MR 1726450, DOI 10.1006/jath.1999.3353
  • G. Golub, B. Gustafsson, P. Milanfar, M. Putinar and J. Varah, Shape reconstruction from moments: theory, algorithms and applications, SPIE Proceedings, Vol. 4116(2000), Advanced Signal Processing, Algorithms, Architecture and Implementations X (Franklin T. Luk, ed.), 406–416.
  • Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • Björn Gustafsson, Chiyu He, Peyman Milanfar, and Mihai Putinar, Reconstructing planar domains from their moments, Inverse Problems 16 (2000), no. 4, 1053–1070. MR 1776483, DOI 10.1088/0266-5611/16/4/312
  • Björn Gustafsson, Mihai Putinar, Edward B. Saff, and Nikos Stylianopoulos, Les polynômes orthogonaux de Bergman sur un archipel, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 499–502 (French, with English and French summaries). MR 2412785, DOI 10.1016/j.crma.2008.03.001
  • B. Gustafsson, M. Putinar, E. B. Saff and N. Stylianopoulos, Bergman polynomials on an archipalego: estimates, zeros and shape reconstruction (manuscript, arXiv0811.1715v1).
  • K. G. Ivanov and V. Totik, Fast decreasing polynomials, Constr. Approx. 6 (1990), no. 1, 1–20. MR 1027506, DOI 10.1007/BF01891406
  • A. N. Kolmogorov, Stationary sequences in Hilbert spaces, Bull. Moscow State Univ., 2(1941), 1–40 (in Russian).
  • M. Krein, On a generalization of some investigations of G. Szegö, V. Smirnoff and A. Kolmogoroff, C. R. (Doklady) Acad. Sci. URSS (N.S.) 46 (1945), 91–94. MR 0013457
  • A. L. Levin, E. B. Saff, and N. S. Stylianopoulos, Zero distribution of Bergman orthogonal polynomials for certain planar domains, Constr. Approx. 19 (2003), no. 3, 411–435. MR 1979059, DOI 10.1007/s00365-002-0519-9
  • D. S. Lubinsky, A new approach to universality limits involving orthogonal polynomials, Annals of Mathematics (to appear).
  • Attila Máté and Paul G. Nevai, Bernstein’s inequality in $L^{p}$ for $0<p<1$ and $(C,\,1)$ bounds for orthogonal polynomials, Ann. of Math. (2) 111 (1980), no. 1, 145–154. MR 558399, DOI 10.2307/1971219
  • Attila Máté, Paul Nevai, and Vilmos Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. (2) 134 (1991), no. 2, 433–453. MR 1127481, DOI 10.2307/2944352
  • Erwin Miña-Díaz, Edward B. Saff, and Nikos S. Stylianopoulos, Zero distributions for polynomials orthogonal with weights over certain planar regions, Comput. Methods Funct. Theory 5 (2005), no. 1, 185–221. MR 2174353, DOI 10.1007/BF03321094
  • Béla Nagy and Vilmos Totik, Sharpening of Hilbert’s lemniscate theorem, J. Anal. Math. 96 (2005), 191–223. MR 2177185, DOI 10.1007/BF02787828
  • Paul Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), no. 1, 3–167. MR 862231, DOI 10.1016/0021-9045(86)90016-X
  • Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
  • L. A. Pastur, Spectral and probabilistic aspects of matrix models, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 207–242. MR 1385683
  • Ch. Pommerenke, On the derivative of a polynomial, Michigan Math. J. 6 (1959), 373–375. MR 109208, DOI 10.1307/mmj/1028998284
  • Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
  • Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
  • F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrieme Congrés de Math. Scand., 1916.
  • Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
  • Barry Simon, Weak convergence of CD kernels and applications, Duke Math. J. 146 (2009), no. 2, 305–330. MR 2477763, DOI 10.1215/00127094-2008-067
  • B. Simon, The Christoffel-Darboux kernel, “Perspectives in PDE, Harmonic Analysis and Applications” in honor of V.G. Maz’ya’s 70th birthday, to be published in Proceedings of Symposia in Pure Mathematics
  • Barry Simon, Two extensions of Lubinsky’s universality theorem, J. Anal. Math. 105 (2008), 345–362. MR 2438429, DOI 10.1007/s11854-008-0039-z
  • Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
  • Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
  • G. Szegő, Orthogonal Polynomials, Coll. Publ., XXIII, Amer. Math. Soc., Providence, 1975.
  • G. Szegő, Collected Papers, ed. R. Askey, Birkhaüser, Boston–Basel–Stuttgart, 1982.
  • Vilmos Totik, Asymptotics for Christoffel functions for general measures on the real line, J. Anal. Math. 81 (2000), 283–303. MR 1785285, DOI 10.1007/BF02788993
  • Vilmos Totik, Polynomial inverse images and polynomial inequalities, Acta Math. 187 (2001), no. 1, 139–160. MR 1864632, DOI 10.1007/BF02392833
  • V. Totik, Universality and fine zero spacing on general sets, Arkiv för Math., doi:10.1007/s11512-008-0071-3 (to appear)
  • J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
  • A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 26C05, 31A99, 41A10
  • Retrieve articles in all journals with MSC (2000): 26C05, 31A99, 41A10
Additional Information
  • Vilmos Totik
  • Affiliation: Bolyai Institute, Analysis Research Group of the Hungarian Academy os Sciences, University of Szeged, Szeged, Aradi v. tere 1, 6720, Hungary – and – Department of Mathematics, University of South Florida, 4202 E. Fowler Avenue, PHY 114, Tampa, Florida 33620-5700
  • Email: totik@math.usf.edu
  • Received by editor(s): April 7, 2008
  • Published electronically: November 18, 2009
  • Additional Notes: The author was supported by NSF DMS 0700471
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 362 (2010), 2053-2087
  • MSC (2000): Primary 26C05, 31A99, 41A10
  • DOI: https://doi.org/10.1090/S0002-9947-09-05059-4
  • MathSciNet review: 2574887