Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equivariant Littlewood-Richardson skew tableaux


Author: Victor Kreiman
Journal: Trans. Amer. Math. Soc. 362 (2010), 2589-2617
MSC (2000): Primary 14M15, 05E10
DOI: https://doi.org/10.1090/S0002-9947-09-04862-4
Published electronically: December 18, 2009
MathSciNet review: 2584612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the classical Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and trapezoid puzzles which restricts to a bijection between positive indexing tableaux and Knutson-Tao puzzles.


References [Enhancements On Off] (What's this?)

  • [Bi] S. C. Billey, Kostant polynomials and the cohomology ring for $ G/B$, Duke Math. J. 96 (1999), no. 1, 205-224. MR 1663931 (2000a:14060)
  • [BK] E. A. Bender and D. E. Knuth, Enumeration of plane partitions, J. Combinatorial Theory Ser. A 13 (1972), 40-54. MR 0299574 (45:8622)
  • [BL1] L. C. Biedenharn and J. D. Louck, A new class of symmetric polynomials defined in terms of tableaux, Adv. in Appl. Math. 10 (1989), no. 4, 396-438. MR 1023942 (91c:05189)
  • [BL2] -, Inhomogeneous basis set of symmetric polynomials defined by tableaux, Proc. Nat. Acad. Sci. U.S.A. 87 (1990), no. 4, 1441-1445. MR 1037509 (90m:22031)
  • [CL] W. Y. C. Chen and J. D. Louck, The factorial Schur function, J. Math. Phys. 34 (1993), no. 9, 4144-4160. MR 1233264 (95b:05210)
  • [F1] W. Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. MR 1464693 (99f:05119)
  • [F2] -, Equivariant cohomology in algebraic geometry, Eilenberg lectures, Columbia University, 2007. Available at http://www.math.lsa.umich.edu/dandersn/eilenberg.
  • [GG] I. Goulden and C. Greene, A new tableau representation for supersymmetric Schur functions, J. Algebra 170 (1994), no. 2, 687-703. MR 1302864 (96f:05187)
  • [Gr] W. Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), no. 3, 599-614. MR 1853356 (2002h:14083)
  • [IN] T. Ikeda and H. Naruse, Excited Young diagrams and equivariant Schubert calculus, arXiv:math.AG/0703637.
  • [KT] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221-260. MR 1997946 (2006a:14088)
  • [KTW] A. Knutson, T. Tao, and C. Woodward, The honeycomb model of $ {\rm GL}_ n(\mathbb{C})$ tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19-48 (electronic). MR 2015329 (2005f:14105)
  • [Kr1] V. Kreiman, Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian, arXiv:math.AG/0512204.
  • [Kr2] -, Products of factorial Schur functions, Electron. J. Combin. 15 (2008), no. 1, Research paper 84, 12 pp. (electronic).
  • [La] A. Lascoux, Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France 102 (1974), 161-179. MR 0364274 (51:529)
  • [LS1] A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447-450. MR 660739 (83e:14039)
  • [LS2] -, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629-633. MR 686357 (84b:14030)
  • [LR] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A 233 (1934).
  • [Ma1] I. G. Macdonald, Schur functions: theme and variations, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., vol. 498, Univ. Louis Pasteur, Strasbourg, 1992, pp. 5-39. MR 1308728 (95m:05245)
  • [Ma2] -, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. MR 1354144 (96h:05207)
  • [Mc] P. J. McNamara, Factorial Grothendieck polynomials, Electron. J. Combin. 13 (2006), no. 1, Research Paper 71, 40 pp. (electronic). MR 2240776 (2007c:05193)
  • [Mi] L. Mihalcea, Giambelli formulae for the equivariant quantum cohomology of the Grassmannian, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2285-2301. MR 2373314
  • [Mo1] A. I. Molev, Littlewood-Richardson polynomials, arXiv:0704.0065.
  • [Mo2] -, Factorial supersymmetric Schur functions and super Capelli identities, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 109-137. MR 1618747 (99j:05190)
  • [MS] A. I. Molev and B. E. Sagan, A Littlewood-Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4429-4443. MR 1621694 (2000a:05212)
  • [Na] M. Nazarov, Yangians and Capelli identities, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 139-163. MR 1618751 (99g:17033)
  • [Ok] A. Okounkov, Quantum immanants and higher Capelli identities, Transform. Groups 1 (1996), no. 1-2, 99-126. MR 1390752 (97j:17010)
  • [OO] A. Okounkov and G. Olshanski, Shifted Schur functions, Algebra i Analiz 9 (1997), no. 2, 73-146, translation in St. Petersburg Math. J. 9 (1998), no. 2, 239-300. MR 1468548 (99f:05118)
  • [RS] J. B. Remmel and M. Shimozono, A simple proof of the Littlewood-Richardson rule and applications, Discrete Math. 193 (1998), no. 1-3, 257-266, Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661373 (2000a:05213)
  • [R] S. Robinson, A Pieri-type formula for $ H^ \ast_ T({\rm SL}_ n(\mathbb{C})/B)$, J. Algebra 249 (2002), no. 1, 38-58. MR 1887984 (2003b:14065)
  • [Sa] B. E. Sagan, The symmetric group: Representations, combinatorial algorithms, and symmetric functions, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. MR 1824028 (2001m:05261)
  • [St] J. R. Stembridge, A concise proof of the Littlewood-Richardson rule, Electron. J. Combin. 9 (2002), no. 1, Note 5, 4 pp. (electronic). MR 1912814 (2003e:05141)
  • [V] R. Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371-421, Appendix A written with A. Knutson. MR 2247964 (2007f:05184)
  • [Z] A. V. Zelevinsky, A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra 69 (1981), no. 1, 82-94. MR 613858 (82j:20028)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14M15, 05E10

Retrieve articles in all journals with MSC (2000): 14M15, 05E10


Additional Information

Victor Kreiman
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email: vkreiman@math.uga.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04862-4
Received by editor(s): July 25, 2007
Received by editor(s) in revised form: May 9, 2008, and June 24, 2008
Published electronically: December 18, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society