The cutoff covering spectrum
Authors:
Christina Sormani and Guofang Wei
Journal:
Trans. Amer. Math. Soc. 362 (2010), 23392391
MSC (2010):
Primary 54E45, 53C20
Published electronically:
December 3, 2009
MathSciNet review:
2584603
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We introduce the cutoff covering spectrum and the cutoff covering spectrum of a metric space or a Riemannian manifold. The spectra measure the sizes of localized holes in the space and are defined using covering spaces called covers and cutoff covers. They are investigated using homotopies which are homotopies via grids whose squares are mapped into balls of radius . On locally compact spaces, we prove that these new spectra are subsets of the closure of the length spectrum. We prove the cutoff covering spectrum is almost continuous with respect to the pointed GromovHausdorff convergence of spaces and that the cutoff covering spectrum is also relatively well behaved. This is not true of the covering spectrum defined in our earlier work, which was shown to be well behaved on compact spaces. We close by analyzing these spectra on Riemannian manifolds with lower bounds on their sectional and Ricci curvature and their limit spaces.
 [Ber]
Lionel
BérardBergery, Quelques exemples de variétés
riemanniennes complètes non compactes à courbure de Ricci
positive, C. R. Acad. Sci. Paris Sér. I Math.
302 (1986), no. 4, 159–161 (French, with
English summary). MR 832061
(87g:53058)
 [BP1]
Valera
Berestovskii and Conrad
Plaut, Uniform universal covers of uniform spaces, Topology
Appl. 154 (2007), no. 8, 1748–1777. MR 2317077
(2008g:55023), http://dx.doi.org/10.1016/j.topol.2006.12.012
 [BP2]
V.N. Beretovskii, C. Plaut, Covering RTrees, arxiv:0707.3609
 [BoMe]
B.
H. Bowditch and G.
Mess, A 4dimensional Kleinian
group, Trans. Amer. Math. Soc.
344 (1994), no. 1,
391–405. MR 1240944
(95f:57057), http://dx.doi.org/10.1090/S00029947199412409446
 [BBI]
D. Burago, Y. Burago, S. Ivanov, A course in Metric Geometry, Graduate Studies in Mathematics Vol. 33, AMS, 2001.
 [Ch]
Jeff
Cheeger, Degeneration of Riemannian metrics under Ricci curvature
bounds, Lezioni Fermiane. [Fermi Lectures], Scuola Normale Superiore,
Pisa, 2001. MR
2006642 (2004j:53049)
 [ChCo1]
Jeff
Cheeger and Tobias
H. Colding, On the structure of spaces with Ricci curvature bounded
below. I, J. Differential Geom. 46 (1997),
no. 3, 406–480. MR 1484888
(98k:53044)
 [ChCo2]
Jeff
Cheeger and Tobias
H. Colding, On the structure of spaces with Ricci curvature bounded
below. III, J. Differential Geom. 54 (2000),
no. 1, 37–74. MR 1815411
(2003a:53044)
 [ChGr]
Jeff
Cheeger and Detlef
Gromoll, On the structure of complete manifolds of nonnegative
curvature, Ann. of Math. (2) 96 (1972),
413–443. MR 0309010
(46 #8121)
 [Gr]
Misha
Gromov, Metric structures for Riemannian and nonRiemannian
spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston
Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063
(85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes;
Translated from the French by Sean Michael Bates. MR 1699320
(2000d:53065)
 [Ma]
William
S. Massey, A basic course in algebraic topology, Graduate
Texts in Mathematics, vol. 127, SpringerVerlag, New York, 1991. MR 1095046
(92c:55001)
 [Me]
X.
Menguy, Examples with bounded diameter growth and infinite
topological type, Duke Math. J. 102 (2000),
no. 3, 403–412. MR 1756103
(2001c:53041), http://dx.doi.org/10.1215/S0012709400102323
 [Na]
Philippe
Nabonnand, Sur les variétés riemanniennes
complètes à courbure de Ricci positive, C. R. Acad. Sci.
Paris Sér. AB 291 (1980), no. 10,
A591–A593 (French, with English summary). MR 600003
(81m:53054)
 [Pe1]
G.
Perelman, Proof of the soul conjecture of Cheeger and Gromoll,
J. Differential Geom. 40 (1994), no. 1,
209–212. MR 1285534
(95d:53037)
 [Pe2]
G. Perelman, Alexandrov's spaces with curvatures bounded from below II, preprint.
 [Po]
L.
Potyagaĭlo, Finitely generated Kleinian groups in
3space and 3manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994), no. 1, 57–77. MR 1250823
(94m:57030), http://dx.doi.org/10.1090/S00029947199412508236
 [Sh]
V.
A. Šarafutdinov, The PogorelovKlingenberg theorem for
manifolds that are homeomorphic to 𝑅ⁿ, Sibirsk. Mat.
Ž. 18 (1977), no. 4, 915–925, 958
(Russian). MR
0487896 (58 #7488)
 [ShSo1]
Zhongmin
Shen and Christina
Sormani, The codimension one homology of a complete manifold with
nonnegative Ricci curvature, Amer. J. Math. 123
(2001), no. 3, 515–524. MR 1833151
(2002i:53048)
 [ShSo2]
Z. Shen and C. Sormani, The Topology of Open Manifolds of Nonnegative Ricci Curvature, Proceedings of the Midwest Geometry Conference, Communications in Mathematical Analysis, Conf. 01 (2008), pp 1119.
 [ShW]
Zhong
Min Shen and Guofang
Wei, On Riemannian manifolds of almost nonnegative curvature,
Indiana Univ. Math. J. 40 (1991), no. 2,
551–565. MR 1119188
(92e:53053), http://dx.doi.org/10.1512/iumj.1991.40.40026
 [So]
C.
Sormani, On loops representing elements of the fundamental group of
a complete manifold with nonnegative Ricci curvature, Indiana Univ.
Math. J. 50 (2001), no. 4, 1867–1883. MR 1889085
(2003b:53038), http://dx.doi.org/10.1512/iumj.2001.50.2048
 [SoWei1]
Christina
Sormani and Guofang
Wei, Hausdorff convergence and universal
covers, Trans. Amer. Math. Soc.
353 (2001), no. 9,
3585–3602 (electronic). MR 1837249
(2002e:53057), http://dx.doi.org/10.1090/S0002994701028021
 [SoWei2]
Christina
Sormani and Guofang
Wei, Universal covers for Hausdorff limits
of noncompact spaces, Trans. Amer. Math.
Soc. 356 (2004), no. 3, 1233–1270 (electronic). MR 2021619
(2005g:53071), http://dx.doi.org/10.1090/S0002994703034123
 [SoWei3]
Christina
Sormani and Guofang
Wei, The covering spectrum of a compact length space, J.
Differential Geom. 67 (2004), no. 1, 35–77. MR 2153481
(2006e:58050)
 [Sp]
Edwin
H. Spanier, Algebraic topology, McGrawHill Book Co., New
York, 1966. MR
0210112 (35 #1007)
 [Wei]
G. Wei, Manifolds with A Lower Ricci Curvature Bound, Surveys in Differential Geometry XI (2007), Metric and Comparison Geometry, eds. J. Cheeger and K. Grove, International Press, Somerville, MA, pp. 203228.
 [Ber]
 L. BerardBergery, Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 159161. MR 832061 (87g:53058)
 [BP1]
 V.N. Beretovskii, C. Plaut, Uniform Universal Covers of Uniform Spaces, Topology and its Applications, Vol. 154, Issue 8, 2007, pp. 17481777. MR 2317077 (2008g:55023)
 [BP2]
 V.N. Beretovskii, C. Plaut, Covering RTrees, arxiv:0707.3609
 [BoMe]
 B.H. Bowditch, G. Mess, A dimensional Kleinian group, Trans. Amer. Math. Soc. 344 (1994), no. 1, 391405. MR 1240944 (95f:57057)
 [BBI]
 D. Burago, Y. Burago, S. Ivanov, A course in Metric Geometry, Graduate Studies in Mathematics Vol. 33, AMS, 2001.
 [Ch]
 J. Cheeger, Degeneration of Riemannian Metrics under Ricci Curvature Bounds, Lezioni Fermiane [Fermi Lectures], Scuola Normale Superiore, Pisa, 2001, ii+77. MR 2006642 (2004j:53049)
 [ChCo1]
 J. Cheeger, T. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom. 46 (1997) 406480. MR 1484888 (98k:53044)
 [ChCo2]
 J. Cheeger, T. Colding, On the structure of spaces with Ricci curvature bounded below III, J. Differential Geom. 54 (2000), no. 1, 3774. MR 1815411 (2003a:53044)
 [ChGr]
 J. Cheeger, D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413443. MR 0309010 (46:8121)
 [Gr]
 M. Gromov, Metric structures for Riemannian and nonRiemannian spaces, PM 152, Birkhauser, 1999. MR 1699320 (2000d:53065)
 [Ma]
 W. Massey, A basic course in algebraic topology, GTM 127, SpringerVerlag, 1991. MR 1095046 (92c:55001)
 [Me]
 X. Menguy, Examples with bounded diameter growth and infinite topological type, Duke Math. J. 102 (2000), no. 3, 403412. MR 1756103 (2001c:53041)
 [Na]
 P. Nabonnand, Sur les variétés riemanniennes complètes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. AB 291 (1980) A591A593. MR 600003 (81m:53054)
 [Pe1]
 G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Differential Geom. 40 (1994), no. 1, 209212. MR 1285534 (95d:53037)
 [Pe2]
 G. Perelman, Alexandrov's spaces with curvatures bounded from below II, preprint.
 [Po]
 L. Potyagaĭlo, Finitely generated Kleinian groups in space and manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994), no. 1, 5777. MR 1250823 (94m:57030)
 [Sh]
 V. A. Sharafutdinov, The PogorelovKlingenberg theorem for manifolds homeomorphic to , Sib. Math. Zh. 18 (1977) 915925. MR 0487896 (58:7488)
 [ShSo1]
 Z. Shen and C. Sormani, The Codimension One Homology of a Complete Manifold with Nonnegative Ricci Curvature, American Journal of Mathematics 123 (2001), no. 3, 515524. MR 1833151 (2002i:53048)
 [ShSo2]
 Z. Shen and C. Sormani, The Topology of Open Manifolds of Nonnegative Ricci Curvature, Proceedings of the Midwest Geometry Conference, Communications in Mathematical Analysis, Conf. 01 (2008), pp 1119.
 [ShW]
 Z. Shen, G. Wei, On Riemannian manifolds of almost nonnegative curvature, Indiana Univ. Math. Jour. 40 (1991), 551565. MR 1119188 (92e:53053)
 [So]
 C. Sormani, On Loops Representing Elements of the Fundamental Group of a Complete Manifold with Nonnegative Ricci Curvature, Indiana Journal of Mathematics 50 (2001), no. 4, 18671883. MR 1889085 (2003b:53038)
 [SoWei1]
 C. Sormani, G. Wei, Hausdorff Convergence and Universal Covers, Transactions of the American Mathematical Society 353 (2001) 35853602. MR 1837249 (2002e:53057)
 [SoWei2]
 C. Sormani, G. Wei, Universal Covers for Hausdorff Limits of Noncompact Spaces, Transactions of the American Mathematical Society 356 (2004), no. 3, 12331270. MR 2021619 (2005g:53071)
 [SoWei3]
 C. Sormani and G. Wei, The Covering Spectrum of a Compact Length Space, Journal of Differential Geometry (2004) 3577. MR 2153481 (2006e:58050)
 [Sp]
 E. Spanier, Algebraic Topology, McGrawHill, Inc., 1966. MR 0210112 (35:1007)
 [Wei]
 G. Wei, Manifolds with A Lower Ricci Curvature Bound, Surveys in Differential Geometry XI (2007), Metric and Comparison Geometry, eds. J. Cheeger and K. Grove, International Press, Somerville, MA, pp. 203228.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
54E45,
53C20
Retrieve articles in all journals
with MSC (2010):
54E45,
53C20
Additional Information
Christina Sormani
Affiliation:
Graduate School and University Center, CUNY, New York, New York 10016 – and – Lehman College, CUNY, Bronx, New York 10468
Email:
sormanic@member.ams.org
Guofang Wei
Affiliation:
Department of Mathematics, University of California, Santa Barbara, Santa Barbara, California 93106
Email:
wei@math.ucsb.edu
DOI:
http://dx.doi.org/10.1090/S0002994709049162
PII:
S 00029947(09)049162
Received by editor(s):
October 31, 2007
Published electronically:
December 3, 2009
Additional Notes:
The first author was partially supported by a grant from the City University of New York PSCCUNY Research Award Program
The second author was partially supported by NSF Grant # DMS0505733
Article copyright:
© Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
