Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On asymptotic Teichmüller space


Author: Alastair Fletcher
Journal: Trans. Amer. Math. Soc. 362 (2010), 2507-2523
MSC (2010): Primary 30F60
DOI: https://doi.org/10.1090/S0002-9947-09-04944-7
Published electronically: December 2, 2009
MathSciNet review: 2584608
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove that for any hyperbolic Riemann surface $ M$ of infinite analytic type, the little Bers space $ Q_{0}(M)$ is isomorphic to $ c_{0}$. As a consequence of this result, if $ M$ is such a Riemann surface, then its asymptotic Teichmüller space $ AT(M)$ is bi-Lipschitz equivalent to a bounded open subset of the Banach space $ l^{\infty}/c_{0}$. Further, if $ M$ and $ N$ are two such Riemann surfaces, their asymptotic Teichmüller spaces, $ AT(M)$ and $ AT(N)$, are locally bi-Lipschitz equivalent.


References [Enhancements On Off] (What's this?)

  • 1. P.L.Duren and A.Schuster, Bergman Spaces, AMS Mathematical Surveys and Monographs, vol. 100, 2004. MR 2033762 (2005c:30053)
  • 2. C.J.Earle, F.P.Gardiner and N.Lakic, Teichmüller spaces with asymptotic conformal equivalence, I.H.E.S. preprint, 1995.
  • 3. C.J.Earle, F.P.Gardiner and N.Lakic, Asymptotic Teichmüller space, Part I: The complex structure, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998), 17-38, Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000. MR 1759668 (2001m:32029)
  • 4. C.J.Earle, V.Markovic and D.Saric, Barycentric extension and the Bers embedding for asymptotic Teichmüller space, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), 87-105, Contemp. Math., 311, Amer. Math. Soc., Providence, RI, 2002. MR 1940165 (2003i:30072)
  • 5. A.Fletcher, Local rigidity of infinite dimensional Teichmüller spaces, J. London Math. Soc. (2) 74, 26-40, 2006. MR 2254550 (2007g:30066)
  • 6. A.Fletcher and V.Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics, 11, Oxford University Press, 2007. MR 2269887 (2007g:30001)
  • 7. F.P.Gardiner, Teichmüller theory and quadratic differentials, John Wiley and Sons, Inc., New York, 1987. MR 903027 (88m:32044)
  • 8. F.P.Gardiner and N.Lakic, Quasiconformal Teichmüller Theory, Math. Surveys Monogr., 76, Amer. Math. Soc., Providence, RI, 2000. MR 1730906 (2001d:32016)
  • 9. F.P.Gardiner and D.P.Sullivan, Symmetric structures on a closed curve, Amer. J. Math., 114, 683-736, 1992. MR 1175689 (95h:30020)
  • 10. J.H.Hubbard, Teichmüller Theory and Applications to Geometry, Topology and Dynamics, Volume 1: Teichmüller Theory, Matrix Editions, NY, 2006. MR 2245223 (2008k:30055)
  • 11. I.Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Reading, Mass., 1972. MR 0357775 (50:10242)
  • 12. O.Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, 109, Springer, New York, 1987. MR 867407 (88f:30073)
  • 13. J.Lindenstrauss and A.Pelczynski, Contributions to the theory of the classical Banach space, J. Functional Analysis, 8, 225-249, 1971. MR 0291772 (45:863)
  • 14. W.Lusky, On the structure of $ Hv\sb 0(D)$ and $ hv\sb 0(D)$, Math. Nachr., 159, 279-289, 1992. MR 1237115 (94i:46040)
  • 15. W.Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math., 175, no. 1, 19-45, 2006. MR 2261698 (2007f:30089)
  • 16. V.Markovic, Biholomorphic maps between Teichmüller spaces, Duke Math. J., 120, no.2, 405-431, 2003. MR 2019982 (2004h:30058)
  • 17. M.Mateljević, The dual of the Bergman space defined on a hyperbolic plane domain, Publications de l'Institut Mathématique, 56(70), 135-139, 1994. MR 1349080 (96e:46035)
  • 18. H.Miyachi, A reduction for asymptotic Teichmüller spaces, Ann. Acad. Sci. Fenn. Math., 32, 55-71, 2007. MR 2297877 (2008j:32016)
  • 19. H.Miyachi, Image of Asymptotic Bers Map, J. Math. Soc. Japan, 60, No. 4, 1255-1276, 2008.
  • 20. S.Nag, The Complex Analytic Theory of Teichmüller Spaces, John Wiley and Sons, New York, 1988. MR 927291 (89f:32040)
  • 21. A.Pelczynski, Projections in certain Banach spaces, Studia Math., 19, 209-228, 1960. MR 0126145 (23:A3441)
  • 22. J.Shapiro, Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces, Duke. Math. J., 43, 187-202, 1976. MR 0500100 (58:17806)
  • 23. A.L.Shields and D.L.Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162, 287-302, 1971. MR 0283559 (44:790)
  • 24. P.Wojtaszczyk, $ H_{p}$-spaces, $ p\leq 1$, and spline systems, Studia Math., 77, no.3, 289-320, 1984. MR 745285 (85f:46053)
  • 25. G.Yao, Harmonic maps and asymptotic Teichmüller space, Manuscripta Math., 122, no. 4, 375-389, 2007. MR 2300050 (2008e:37047)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30F60

Retrieve articles in all journals with MSC (2010): 30F60


Additional Information

Alastair Fletcher
Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: Alastair.Fletcher@warwick.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-09-04944-7
Keywords: Asymptotic Teichm\"{u}ller space, little Bers space
Received by editor(s): February 29, 2008
Published electronically: December 2, 2009
Additional Notes: The author was supported by EPSRC grant EP/D065321/1
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society