Positive polynomials and sequential closures of quadratic modules

Author:
Tim Netzer

Journal:
Trans. Amer. Math. Soc. **362** (2010), 2619-2639

MSC (2000):
Primary 44A60, 14P10, 13J30; Secondary 11E25

DOI:
https://doi.org/10.1090/S0002-9947-09-05001-6

Published electronically:
December 14, 2009

MathSciNet review:
2584613

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a basic closed semi-algebraic set in and let be the corresponding preordering in . We examine for which polynomials there exist identities

*fibre-preorderings*, constructed from bounded polynomials. These fibre-preorderings are easier to deal with than the original preordering in general. For a large class of examples we are thus able to show that either

*every*polynomial that is nonnegative on admits such representations, or at least the polynomials from do. The results also hold in the more general setup of arbitrary commutative algebras and quadratic modules instead of preorderings.

**[Bi]**Torben Maack Bisgaard,*The topology of finitely open sets is not a vector space topology*, Arch. Math. (Basel)**60**(1993), no. 6, 546–552. MR**1216700**, https://doi.org/10.1007/BF01236081**[B]**N. Bourbaki,*Topological vector spaces. Chapters 1–5*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR**910295****[CKM]**J. Cimprič, S. Kuhlmann, M. Marshall:*Positivity in Power Series Rings*, Advances in Geometry, to appear.**[CMN1]**J. Cimprič, T. Netzer, M. Marshall:*On the Real Multidimensional Rational -Moment Problem*, to appear in Trans. Amer. Math. Soc.**[CMN2]**J. Cimprič, T. Netzer, M. Marshall:*Closures of Quadratic Modules*, to appear in Israel J. Math.**[F]**William Fulton,*Algebraic curves. An introduction to algebraic geometry*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss; Mathematics Lecture Notes Series. MR**0313252****[H]**E. K. Haviland,*On the Momentum Problem for Distribution Functions in More Than One Dimension. II*, Amer. J. Math.**58**(1936), no. 1, 164–168. MR**1507139**, https://doi.org/10.2307/2371063**[J]**Thomas Jacobi,*A representation theorem for certain partially ordered commutative rings*, Math. Z.**237**(2001), no. 2, 259–273. MR**1838311**, https://doi.org/10.1007/PL00004868**[JP]**Thomas Jacobi and Alexander Prestel,*Distinguished representations of strictly positive polynomials*, J. Reine Angew. Math.**532**(2001), 223–235. MR**1817508**, https://doi.org/10.1515/crll.2001.023**[KM]**S. Kuhlmann and M. Marshall,*Positivity, sums of squares and the multi-dimensional moment problem*, Trans. Amer. Math. Soc.**354**(2002), no. 11, 4285–4301. MR**1926876**, https://doi.org/10.1090/S0002-9947-02-03075-1**[KMS]**S. Kuhlmann, M. Marshall, and N. Schwartz,*Positivity, sums of squares and the multi-dimensional moment problem. II*, Adv. Geom.**5**(2005), no. 4, 583–606. MR**2174483**, https://doi.org/10.1515/advg.2005.5.4.583**[L]**Jean B. Lasserre,*Global optimization with polynomials and the problem of moments*, SIAM J. Optim.**11**(2000/01), no. 3, 796–817. MR**1814045**, https://doi.org/10.1137/S1052623400366802**[M1]**Murray Marshall,*Positive polynomials and sums of squares*, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR**2383959****[M2]**M. Marshall:*Polynomials Non-negative on a Strip*, Proc. of the Amer. Math. Soc., to appear.**[N1]**Tim Netzer,*An elementary proof of Schmüdgen’s theorem on the moment problem of closed semi-algebraic sets*, Proc. Amer. Math. Soc.**136**(2008), no. 2, 529–537. MR**2358493**, https://doi.org/10.1090/S0002-9939-07-09087-9**[N2]**Tim Netzer,*Stability of quadratic modules*, Manuscripta Math.**129**(2009), no. 2, 251–271. MR**2505804**, https://doi.org/10.1007/s00229-009-0258-3**[Pl]**D. Plaumann:*Bounded Polynomials, Sums of Squares and the Moment Problem*, Doctoral Thesis, University of Konstanz (2008).**[PoSc]**Victoria Powers and Claus Scheiderer,*The moment problem for non-compact semialgebraic sets*, Adv. Geom.**1**(2001), no. 1, 71–88. MR**1823953**, https://doi.org/10.1515/advg.2001.005**[Po]**Victoria Powers,*Positive polynomials and the moment problem for cylinders with compact cross-section*, J. Pure Appl. Algebra**188**(2004), no. 1-3, 217–226. MR**2030815**, https://doi.org/10.1016/j.jpaa.2003.10.009**[PD]**Alexander Prestel and Charles N. Delzell,*Positive polynomials*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR**1829790****[Pu]**Mihai Putinar,*Positive polynomials on compact semi-algebraic sets*, Indiana Univ. Math. J.**42**(1993), no. 3, 969–984. MR**1254128**, https://doi.org/10.1512/iumj.1993.42.42045**[Sf]**Helmut H. Schaefer,*Topological vector spaces*, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR**0342978****[Sc1]**Claus Scheiderer,*Sums of squares of regular functions on real algebraic varieties*, Trans. Amer. Math. Soc.**352**(2000), no. 3, 1039–1069. MR**1675230**, https://doi.org/10.1090/S0002-9947-99-02522-2**[Sc2]**Claus Scheiderer,*Sums of squares on real algebraic curves*, Math. Z.**245**(2003), no. 4, 725–760. MR**2020709**, https://doi.org/10.1007/s00209-003-0568-1**[Sc3]**Claus Scheiderer,*Distinguished representations of non-negative polynomials*, J. Algebra**289**(2005), no. 2, 558–573. MR**2142385**, https://doi.org/10.1016/j.jalgebra.2005.01.043**[Sc4]**Claus Scheiderer,*Non-existence of degree bounds for weighted sums of squares representations*, J. Complexity**21**(2005), no. 6, 823–844. MR**2182447**, https://doi.org/10.1016/j.jco.2005.04.001**[S1]**Konrad Schmüdgen,*The 𝐾-moment problem for compact semi-algebraic sets*, Math. Ann.**289**(1991), no. 2, 203–206. MR**1092173**, https://doi.org/10.1007/BF01446568**[S2]**Konrad Schmüdgen,*On the moment problem of closed semi-algebraic sets*, J. Reine Angew. Math.**558**(2003), 225–234. MR**1979186**, https://doi.org/10.1515/crll.2003.040**[Sw1]**Markus Schweighofer,*Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz*, J. Reine Angew. Math.**554**(2003), 19–45. MR**1952167**, https://doi.org/10.1515/crll.2003.004**[Sw2]**Markus Schweighofer,*Optimization of polynomials on compact semialgebraic sets*, SIAM J. Optim.**15**(2005), no. 3, 805–825. MR**2142861**, https://doi.org/10.1137/S1052623403431779

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
44A60,
14P10,
13J30,
11E25

Retrieve articles in all journals with MSC (2000): 44A60, 14P10, 13J30, 11E25

Additional Information

**Tim Netzer**

Affiliation:
Fakultät für Mathematik und Informatik, Universität Leipzig, PF 100920, 04009 Leipzig, Germany

Email:
tim.netzer@math.uni-leipzig.de

DOI:
https://doi.org/10.1090/S0002-9947-09-05001-6

Keywords:
Moment problems,
semi-algebraic sets,
real algebra,
positive polynomials and sum of squares

Received by editor(s):
July 21, 2008

Published electronically:
December 14, 2009

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.