Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Automorphism groups on normal singular cubic surfaces with no parameters


Author: Yoshiyuki Sakamaki
Journal: Trans. Amer. Math. Soc. 362 (2010), 2641-2666
MSC (2010): Primary 14J50; Secondary 14J17
DOI: https://doi.org/10.1090/S0002-9947-09-05023-5
Published electronically: December 3, 2009
MathSciNet review: 2584614
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classification of normal singular cubic surfaces in $ \mathbf{P}^3$ over a complex number field $ \mathbf{C}$ was given by J. W. Bruce and C. T. C. Wall. In this paper, first we prove their results by a different way, second we provide normal forms of normal singular cubic surfaces according to the type of singularities, and finally we determine automorphism groups on normal singular cubic surfaces with no parameters.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville, Complex Algebraic Surfaces. London Mathematical Society Lecture Note Series 68. Cambridge Univ. Press, 1983. MR 732439 (85a:14024)
  • 2. J. W. Bruce and C. T. C. Wall, On the classification of cubic surfaces. J. London Math. Soc. (2) 19 (1979), no. 2, 245-256. MR 533323 (80f:14021)
  • 3. A. Cayley, A memoir on cubic surfaces. Phil. Trans. Roy. Soc., 159 (1869), 231-326.
  • 4. D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces. Proc. London Math. Soc. (3) 57 (1988), no. 1, 25-87. MR 940430 (89f:11083)
  • 5. M. Demazure, Surfaces de del Pezzo II-V. Séminaire sur les Singularités des Surfaces, Lecture Notes in Math., Vol. 777, Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 579026 (82d:14021)
  • 6. I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane Cremona group. arXiv:math/0610595v2 [math.AG] 21 Jul 2007.
  • 7. J. Harris, Algebraic geometry. Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1995. MR 1416564 (97e:14001)
  • 8. R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57:3116)
  • 9. T. Hosoh, Automorphism groups of cubic surfaces. J. Algebra 192 (1997), no. 2, 651-677. MR 1452681 (99d:14042)
  • 10. T. Hosoh, Automorphism groups of quartic del Pezzo surfaces. J. Algebra 185 (1996), no. 2, 374-389. MR 1417377 (97i:14026)
  • 11. S. Iitaka, Algebraic Geometry. Graduate Texts in Mathematics, 76. Springer-Verlag, New York-Berlin, 1982. MR 637060 (84j:14001)
  • 12. Y. Kawamata, Algebraic Varieties. Kyoritsu Shuppan Co., Ltd., 1997.
  • 13. M. Koitabashi, Automorphism groups of generic rational surfaces. J. Algebra 116 (1988), no. 1, 130-142. MR 944150 (89f:14045)
  • 14. M. Reid, Young person's guide to canonical singularities. Proc. Sympos. Pure Math, 46-1(1987), 345-414. MR 927963 (89b:14016)
  • 15. Y. Manin, Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland, Amsterdam, 1974. MR 833513 (87d:11037)
  • 16. L. Schläfli, On the distribution of surfaces of the third order into species. Phil. Trans. Roy. Soc., 153 (1864), 193-247.
  • 17. B. Segre, The Non-singular Cubic Surfaces. Oxford University Press, Oxford, 1942. MR 0008171 (4:254b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14J50, 14J17

Retrieve articles in all journals with MSC (2010): 14J50, 14J17


Additional Information

Yoshiyuki Sakamaki
Affiliation: Graduate School of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
Address at time of publication: System Engineering Laboratory, Toshiba Corporate Research & Development Center, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa, 212-8582, Japan
Email: sakamaki@math.kyushu-u.ac.jp, yoshiyuki.sakamaki@toshiba.co.jp

DOI: https://doi.org/10.1090/S0002-9947-09-05023-5
Keywords: Algebraic geometry, automorphism groups, cubic surfaces, singularities, blowing-up, infinitely near points
Received by editor(s): November 13, 2007
Received by editor(s) in revised form: July 29, 2008
Published electronically: December 3, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society