Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free actions of finite groups on $ S^n \times S^n$


Authors: Ian Hambleton and Özgün Ünlü
Journal: Trans. Amer. Math. Soc. 362 (2010), 3289-3317
MSC (2010): Primary 57S17, 57R67
DOI: https://doi.org/10.1090/S0002-9947-09-05039-9
Published electronically: December 15, 2009
MathSciNet review: 2592957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be an odd prime. We construct a non-abelian extension $ \Gamma$ of $ S^1$ by $ \mathbf{Z}/p \times \mathbf{Z}/p$, and prove that any finite subgroup of $ \Gamma$ acts freely and smoothly on $ S^{2p-1} \times S^{2p-1}$. In particular, for each odd prime $ p$ we obtain free smooth actions of infinitely many non-metacyclic rank two $ p$-groups on $ S^{2p-1} \times S^{2p-1}$. These results arise from a general approach to the existence problem for finite group actions on products of equidimensional spheres.


References [Enhancements On Off] (What's this?)

  • 1. A. Adem, Constructing and deconstructing group actions, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $ K$-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 1-8. MR 2066494 (2005d:57048)
  • 2. A. Adem, J. F. Davis, and Ö. Ünlü, Fixity and free group actions on products of spheres, Comment. Math. Helv. 79 (2004), 758-778. MR 2099121 (2006a:57034)
  • 3. A. Adem and J. H. Smith, Periodic complexes and group actions, Ann. of Math. (2) 154 (2001), 407-435. MR 1865976 (2002i:57031)
  • 4. K. Alzubaidy, Free actions of $ p$-groups $ (p>3)$ on $ S\sp{n}\times S\sp{n}$, Glasgow Math. J. 23 (1982), 97-101. MR 663134 (83i:57032)
  • 5. -, Free actions on $ (S\sp n)\sp k$, Mathematika 32 (1985), 49-54. MR 817107 (87f:57030)
  • 6. D. J. Benson and J. F. Carlson, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 342 (1994), 447-488. MR 1142778 (94f:20100)
  • 7. -, Complexity and multiple complexes, Math. Z. 195 (1987), 221-238. MR 892053 (88e:20050)
  • 8. N. Blackburn, Generalizations of certain elementary theorems on $ p$-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22. MR 0122876 (23:A208)
  • 9. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Tôhoku Math. J. (2) 25 (1973), 69-87. MR 0321077 (47:9610)
  • 10. W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186. MR 0251736 (40:4963)
  • 11. K. S. Brown, Cohomology of groups, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original. MR 1324339 (96a:20072)
  • 12. H. Cartan, Sur les groupes d'Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 704-707. MR 0065161 (16:390b)
  • 13. -, Séminaire Henri Cartan de l'Ecole Normale Supérieure, 1954/1955. Algèbres d'Eilenberg-MacLane et homotopie, Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955.
  • 14. P. E. Conner, On the action of a finite group on $ S\sp{n}\times S\sp{n}$, Ann. of Math. (2) 66 (1957), 586-588. MR 0096235 (20:2725)
  • 15. D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), 425-475. MR 0476841 (57:16392)
  • 16. I. Hambleton, Some examples of free actions on products of spheres, Topology 45 (2006), 735-749. MR 2236376 (2007b:57065)
  • 17. I. Hambleton and O. Ünlü, Examples of free actions on products of spheres, Quart. J. Math. 60 (2009), 461-474.
  • 18. A. Heller, A note on spaces with operators, Illinois J. Math. 3 (1959), 98-100. MR 0107866 (21:6588)
  • 19. F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Marcel Dekker Inc., New York, 1971, Appendix II by W. Scharlau, Lecture Notes in Pure and Applied Mathematics, Vol. 4. MR 0341499 (49:6250)
  • 20. M. A. Jackson, $ {\rm Qd}(p)$-free rank two finite groups act freely on a homotopy product of two spheres, J. Pure Appl. Algebra 208 (2007), 821-831. MR 2283428 (2007k:55007)
  • 21. T. Kambe, The structure of $ K\sb{\Lambda }$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135-146. MR 0198491 (33:6646)
  • 22. M. Karoubi, $ K$-theory, An introduction, Grundlehren der Mathematischen Wissenschaften, Band 226, Springer-Verlag, Berlin, 1978. MR 0488029 (58:7605)
  • 23. M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), 707-754. MR 1709301 (2001a:57051)
  • 24. I. J. Leary, The integral cohomology rings of some $ p$-groups, Math. Proc. Cambridge Philos. Soc. 110 (1991), 25-32. MR 1104598 (93a:20081)
  • 25. -, The mod-$ p$ cohomology rings of some $ p$-groups, Math. Proc. Cambridge Philos. Soc. 112 (1992), 63-75. MR 1162933 (94a:20087)
  • 26. I. J. Leary, The cohomology of certain groups, Ph.D. thesis, University of Cambridge, 1991, (http://www.maths.abdn.ac.uk/ bensondj/html/archive/leary.html).
  • 27. G. Lewis, Free actions on $ S\sp{n}\times S\sp{n}$, Trans. Amer. Math. Soc. 132 (1968), 531-540. MR 0229235 (37:4809)
  • 28. -, The integral cohomology rings of groups of order $ p\sp{3}$, Trans. Amer. Math. Soc. 132 (1968), 501-529. MR 0223430 (36:6478)
  • 29. S. Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR 1344215 (96d:18001)
  • 30. J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • 31. R. Oliver, Free compact group actions on products of spheres, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 539-548. MR 561237 (81k:55005)
  • 32. A. Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980), 87-192. MR 560997 (82f:57024a)
  • 33. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, 2004.
  • 34. E. Stein, Free actions on products of spheres, Michigan Math. J. 26 (1979), 187-193. MR 532319 (80j:57042)
  • 35. R. E. Stong, Notes on cobordism theory, Mathematical notes, Princeton University Press, Princeton, N.J., 1968. MR 0248858 (40:2108)
  • 36. P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (1993), 745-759. MR 1214960 (94h:57042)
  • 37. C. B. Thomas, Free actions by $ p$-groups on products of spheres and Yagita's invariant $ po(G)$, Transformation groups (Osaka, 1987), Lecture Notes in Math., vol. 1375, Springer, Berlin, 1989, pp. 326-338. MR 1006704 (90m:57035)
  • 38. Ö. Ünlü, Constructions of free group actions on products of spheres, Ph.D. Thesis, University of Wisconsin, 2004.
  • 39. C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), 1-80. MR 0432737 (55:5720)
  • 40. -, Surgery on compact manifolds, second ed., American Mathematical Society, Providence, RI, 1999, Edited and with a foreword by A. A. Ranicki. MR 1687388 (2000a:57089)
  • 41. N. Yagita, On the dimension of spheres whose product admits a free action by a nonabelian group, Quart. J. Math. Oxford Ser. (2) 36 (1985), 117-127. MR 780356 (86h:57041)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57S17, 57R67

Retrieve articles in all journals with MSC (2010): 57S17, 57R67


Additional Information

Ian Hambleton
Affiliation: Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
Email: ian@math.mcmaster.ca

Özgün Ünlü
Affiliation: Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
Address at time of publication: Department of Mathematics, Bilkent University, Ankara, Turkey 06800
Email: unluo@fen.bilkent.edu.tr

DOI: https://doi.org/10.1090/S0002-9947-09-05039-9
Received by editor(s): April 10, 2008
Received by editor(s) in revised form: March 4, 2009
Published electronically: December 15, 2009
Additional Notes: This research was partially supported by NSERC Discovery Grant A4000.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society