Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On a question of Landis and Oleinik


Author: Tu A. Nguyen
Journal: Trans. Amer. Math. Soc. 362 (2010), 2875-2899
MSC (2000): Primary 35K99
DOI: https://doi.org/10.1090/S0002-9947-10-04733-1
Published electronically: January 4, 2010
MathSciNet review: 2592940
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P=\partial_{t}+\partial_{i}(a^{ij}\partial_{j})$ be a backward parabolic operator. It is shown that under certain conditions on $ \left\{ a^{ij}\right\} $, if $ u$ satisfies $ \left\vert Pu\right\vert\leq$ $ C(\left\vert u\right\vert+\left\vert\nabla u\right\vert)$, $ \left\vert u(x,t)\right\vert\lesssim e^{C\left\vert x\right\vert^{2}}$ in $ \mathbb{R}^{n}\times[0,T]$ and $ \left\vert u(x,0)\right\vert\lesssim e^{-M\left\vert x\right\vert^{2}}$ for all $ M>0$, then $ u$ vanishes identically in $ \mathbb{R}^{n}\times[0,T]$.


References [Enhancements On Off] (What's this?)

  • 1. Giovanni Alessandrini and Sergio Vessella, Remark on the strong unique continuation property for parabolic operators, Proc. Amer. Math. Soc. 132 (2004), no. 2, 499-501 (electronic). MR 2022375 (2004j:35034)
  • 2. L. Escauriaza, F. J. Fernández, and S. Vessella, Doubling properties of caloric functions, Appl. Anal. 85 (2006), no. 1-3, 205-223. MR 2198840 (2006k:35121)
  • 3. L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Decay at infinity of caloric functions within characteristic hyperplanes, Math. Res. Lett. 13 (2006), no. 2-3, 441-453. MR 2231129
  • 4. -, On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1811-1823. MR 2273975
  • 5. L. Escauriaza, G. Seregin, and V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 147-157. MR 2005639 (2005j:35097)
  • 6. -, Backward uniqueness for the heat operator in half-space, Algebra i Analiz 15 (2003), no. 1, 201-214. MR 1979722 (2004c:35153)
  • 7. Luis Escauriaza and Francisco Javier Fernández, Unique continuation for parabolic operators, Ark. Mat. 41 (2003), no. 1, 35-60. MR 1971939 (2004b:35136)
  • 8. F. J. Fernandez, Unique continuation for parabolic operators. II, Comm. Partial Differential Equations 28 (2003), no. 9-10, 1597-1604. MR 2001174 (2004i:35161)
  • 9. C. E. Kenig, Personal communication.
  • 10. O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1967. MR 0241822 (39:3159b)
  • 11. E. M. Landis and O. A. Oleĭnik, Generalized analyticity and certain properties, of solutions of elliptic and parabolic equations, that are connected with it, Uspehi Mat. Nauk 29 (1974), no. 2 (176), 190-206, Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ(1901-1973), I. MR 0402268 (53:6089)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K99

Retrieve articles in all journals with MSC (2000): 35K99


Additional Information

Tu A. Nguyen
Affiliation: Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637
Address at time of publication: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
Email: tu@math.uchicago.edu, anhtu@math.washington.edu

DOI: https://doi.org/10.1090/S0002-9947-10-04733-1
Received by editor(s): October 29, 2007
Published electronically: January 4, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society