Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On stable constant mean curvature surfaces in $ \mathbb{S}^2\times \mathbb{R}$ and $ \mathbb{H}^2\times \mathbb{R} $


Author: Rabah Souam
Journal: Trans. Amer. Math. Soc. 362 (2010), 2845-2857
MSC (2010): Primary 53C42, 49Q10
DOI: https://doi.org/10.1090/S0002-9947-10-04826-9
Published electronically: January 20, 2010
MathSciNet review: 2592938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the stability of immersed compact constant mean curvature (CMC) surfaces without boundary in some Riemannian 3-manifolds, in particular the Riemannian product spaces $ \mathbb{S}^2 \times \mathbb{R}$ and $ \mathbb{H}^2\times\mathbb{R}.$ We prove that rotational CMC spheres in $ \mathbb{H}^2\times\mathbb{R}$ are all stable, whereas in $ \mathbb{S}^2\times\mathbb{R}$ there exists some value $ H_0\approx 0.18$ such that rotational CMC spheres are stable for $ H\geq H_0$ and unstable for $ 0<H<H_0.$ We show that a compact stable immersed CMC surface in $ \mathbb{S}^2\times \mathbb{R}$ is either a finite union of horizontal slices or a rotational sphere. In the more general case of an ambient manifold which is a simply connected conformally flat 3-manifold with nonnegative Ricci curvature we show that a closed stable immersed CMC surface is either a sphere or an embedded torus. Under the weaker assumption that the scalar curvature is nonnegative, we prove that a closed stable immersed CMC surface has genus at most three. In the case of $ \mathbb{H}^2\times \mathbb{R}$ we show that a closed stable immersed CMC surface is a rotational sphere if it has mean curvature $ H\ge 1/\sqrt {2}$ and that it has genus at most one if $ 1/\sqrt{3} < H < 1/\sqrt {2}$ and genus at most two if $ H=1/\sqrt{3}.$


References [Enhancements On Off] (What's this?)

  • 1. U. Abresch & H. Rosenberg. A Hopf differential for constant mean curvature surfaces in $ \mathbb{S}^2\times \mathbb{R}$ and $ \mathbb{H}^ 2\times \mathbb{R}$. Acta Math. 193 (2004), no. 2, 141-174. MR 2134864 (2006h:53003)
  • 2. J-L. Barbosa & M. do Carmo. Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (1984), no. 3, 339-353. MR 731682 (85k:58021c)
  • 3. J-L. Barbosa; M. do Carmo & J. Eschenburg. Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), no. 1, 123-138. MR 917854 (88m:53109)
  • 4. S.Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helv. 51 (1976), no. 1, 43-55. MR 0397805 (53:1661)
  • 5. P. Griffiths & J. Harris. Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New York, 1978. MR 507725 (80b:14001)
  • 6. J. Hersch. Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645-A1648. MR 0292357 (45:1444)
  • 7. W-T. Hsiang & W-Y. Hsiang. On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces. I. Invent. Math. 98 (1989), no. 1, 39-58. MR 1010154 (90h:53078)
  • 8. M. Hutchings; F. Morgan; M. Ritoré & A. Ros. Proof of the double bubble conjecture. Ann. of Math. (2) 155 (2002), no. 2, 459-489 MR 1906593 (2003c:53013)
  • 9. M. Koiso. Deformation and stability of surfaces with constant mean curvature. Tohoku Math. J. (2) 54 (2002), no. 1, 145-159. MR 1878932 (2003j:58021)
  • 10. P. Li & S-T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69 (1982), no. 2, 269-291 MR 674407 (84f:53049)
  • 11. B. Nelli & H. Rosenberg. Global properties of constant mean curvature surfaces in $ \mathbb{H}^ 2\times\mathbb{R}$. Pacific J. Math. 226 (2006), no. 1, 137-152. MR 2247859 (2007i:53010)
  • 12. R. Pedrosa. The isoperimetric problem in spherical cylinders. Ann. Global Anal. Geom. 26 (2004), no. 4, 333-354. MR 2103404 (2005h:53109)
  • 13. M. Ritoré. Index one minimal surfaces in flat three space forms. Indiana Univ. Math. J. 46 (1997), no. 4, 1137-1153. MR 1631568 (99h:58041)
  • 14. A. Ros. The isoperimetric problem. Global theory of minimal surfaces, 175-209, Clay Math. Proc., 2. Amer. Math. Soc., Providence, RI, 2005. MR 2167260 (2006e:53023)
  • 15. A. Ros. One-sided complete stable minimal surfaces. J. Differential Geom. 74 (2006), no. 1, 69-92. MR 2260928 (2007g:53008)
  • 16. A. Ros. Stable periodic constant mean curvature surfaces and mesoscopic phase separation. Interfaces Free Bound. 9 (2007), no. 3, 355-365. MR 2341847 (2008h:58025)
  • 17. A. Ros & R. Souam. On stability of capillary surfaces in a ball. Pacific J. Math. 178 (1997), no. 2, 345-361. MR 1447419 (98c:58029)
  • 18. A. Ros & E. Vergasta. Stability for hypersurfaces of constant mean curvature with free boundary. Geom. Dedicata 56 (1995), no. 1, 19-33. MR 1338315 (96h:53013)
  • 19. M. Ross. Schwarz' $ P$ and $ D$ surfaces are stable. Differential Geom. Appl. 2 (1992), no. 2, 179-195. MR 1245555 (94j:53010)
  • 20. R. Souam. On stability of stationary hypersurfaces for the partitioning problem for balls in space forms. Math. Z. 224 (1997), no. 2, 195-208. MR 1431192 (98a:53096)
  • 21. R. Souam & E. Toubiana. On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds. Mat. Contemp. 30 (2006), 201-215.
  • 22. R. Souam & E. Toubiana. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv. 84 (2009), no. 3, 673-704. MR 2507258
  • 23. M. Spivak. A comprehensive introduction to differential geometry, Vol. 4. Publish or Perish, Boston, 1970.
  • 24. T.J. Willmore. Note on embedded surfaces. An. Şti. Univ. ``Al. I. Cuza'' Iaşi Secţ. I a Mat. (N.S.) 11B (1965), 493-496. MR 0202066 (34:1940)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C42, 49Q10

Retrieve articles in all journals with MSC (2010): 53C42, 49Q10


Additional Information

Rabah Souam
Affiliation: Institut de Mathématiques de Jussieu, CNRS UMR 7586, Université Paris Diderot - Paris 7, Géométrie et Dynamique, Site Chevaleret, Case 7012, 75205 Paris Cedex 13, France
Email: souam@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-10-04826-9
Keywords: Constant mean curvature, stability
Received by editor(s): October 23, 2007
Published electronically: January 20, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society