Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Bando-Futaki invariants on hypersurfaces

Author: Chiung-ju Liu
Journal: Trans. Amer. Math. Soc. 362 (2010), 2923-2962
MSC (2010): Primary 32Q15; Secondary 53C55
Published electronically: January 21, 2010
MathSciNet review: 2592942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the Bando-Futaki invariants on hypersurfaces are derived in terms of the degree of the defining polynomials, the dimension of the underlying projective space, and the given holomorphic vector field. In addition, the holomorphic invariant introduced by Tian and Chen (2002) is proven to be the Futaki invariant on compact Kähler manifolds with positive first Chern class.

References [Enhancements On Off] (What's this?)

  • 1. S. Bando.
    An obstruction for Chern class forms to be harmonic.
    Kodai Math. J., 29(3):337-345, 2006. MR 2278770 (2007j:32018)
  • 2. E. Calabi.
    Extremal Kähler metrics. II.
    In Differential geometry and complex analysis, pages 95-114. Springer, Berlin, 1985. MR 780039 (86h:53067)
  • 3. X. X. Chen and G. Tian.
    Ricci flow on Kähler-Einstein surfaces.
    Invent. Math., 147(3):487-544, 2002. MR 1893004 (2003c:53095)
  • 4. W. Y. Ding and G. Tian.
    Kähler-Einstein metrics and the generalized Futaki invariant.
    Invent. Math., 110(2):315-335, 1992. MR 1185586 (93m:53039)
  • 5. A. Futaki.
    An obstruction to the existence of Einstein Kähler metrics.
    Invent. Math., 73(3):437-443, 1983. MR 718940 (84j:53072)
  • 6. A. Futaki.
    Kähler-Einstein metrics and integral invariants, volume 1314 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin, 1988. MR 947341 (90a:53053)
  • 7. A. Futaki.
    Asymptotic Chow semi-stability and integral invariants.
    Internat. J. Math., 15(9):967-979, 2004. MR 2106156 (2005g:32029)
  • 8. A. Futaki and S. Morita.
    Invariant polynomials of the automorphism group of a compact complex manifold.
    J. Differential Geom., 21(1):135-142, 1985. MR 806707 (87h:32061)
  • 9. P. Griffiths and J. Harris.
    Principles of algebraic geometry.
    Wiley-Interscience [John Wiley & Sons], New York, 1978.
    Pure and Applied Mathematics. MR 507725 (80b:14001)
  • 10. S. Kobayashi.
    On compact Kähler manifolds with positive definite Ricci tensor.
    Ann. of Math. (2), 74:570-574, 1961. MR 0133086 (24:A2922)
  • 11. N. C. Leung.
    Bando Futaki invariants and Kähler Einstein metric.
    Comm. Anal. Geom., 6(4):799-808, 1998. MR 1664891 (2000d:32043)
  • 12. Z. Lu.
    On the Futaki invariants of complete intersections.
    Duke Math. J., 100(2):359-372, 1999. MR 1722959 (2000h:32033)
  • 13. Z. Lu.
    $ K$ energy and $ K$ stability on hypersurfaces.
    Comm. Anal. Geom., 12(3):601-630, 2004. MR 2128605 (2006m:32024)
  • 14. D. H. Phong and J. Sturm.
    The Futaki invariant and the Mabuchi energy of a complete intersection.
    Comm. Anal. Geom., 12(1-2):321-343, 2004. MR 2074881 (2005c:32030)
  • 15. G. Tian.
    The $ K$-energy on hypersurfaces and stability.
    Comm. Anal. Geom., 2(2):239-265, 1994. MR 1312688 (95m:32030)
  • 16. G. Tian and X. Zhu.
    A new holomorphic invariant and uniqueness of Kähler-Ricci solitons.
    Comment. Math. Helv., 77(2):297-325, 2002. MR 1915043 (2003i:32042)
  • 17. M. Yotov.
    Generalized Futaki invariant of almost Fano toric varieties, examples.
    Preprint, 1999.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32Q15, 53C55

Retrieve articles in all journals with MSC (2010): 32Q15, 53C55

Additional Information

Chiung-ju Liu
Affiliation: TIMS, Department of Mathematics, National Taiwan University, Taipei, Taiwan 106

Keywords: Bando-Futaki invariants, Futaki invariants
Received by editor(s): December 21, 2007
Published electronically: January 21, 2010
Additional Notes: The author was partially supported by NSF:DMS-0202508 and NSF:DMS-0347033 during her Ph.D. study
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society