Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak type estimates for spherical multipliers on noncompact symmetric spaces


Authors: Stefano Meda and Maria Vallarino
Journal: Trans. Amer. Math. Soc. 362 (2010), 2993-3026
MSC (2000): Primary 42B15, 53C35, 32A55
DOI: https://doi.org/10.1090/S0002-9947-10-05082-8
Published electronically: January 4, 2010
MathSciNet review: 2592944
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove sharp weak type $ 1$ estimates for spherical Fourier multipliers on symmetric spaces of the noncompact type. This complements earlier results of J.-Ph. Anker and A.D. Ionescu.


References [Enhancements On Off] (What's this?)

  • 1. J.-Ph. Anker, $ L_p$ Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597-628. MR 1078270 (92e:43006)
  • 2. J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297. MR 1150587 (93b:43007)
  • 3. J.-Ph. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces I, Geom. Funct. Anal. 9 (1999), 1035-1091. MR 1736928 (2001b:58038)
  • 4. J.-Ph. Anker and N. Lohoué, Moltiplicateurs sur certain espaces symétriques, Amer. J. Math. 108 (1986), 1303-1354. MR 868894 (88c:43008)
  • 5. A. Carbonaro, G. Mauceri and S. Meda, $ H^1$ and $ BMO$ for certain nondoubling metric measure spaces, to appear in Ann. Sc. Norm. Sup. Pisa, arXiv:0808.0146 [math.FA].
  • 6. J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53. MR 658471 (84b:58109)
  • 7. J.-L. Clerc and E.M. Stein, $ L^p$ multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912. MR 0367561 (51:3803)
  • 8. R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • 9. M.G. Cowling, S. Giulini and S. Meda, Estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. II, J. Lie Th. 5 (1995), 1-14. MR 1362006 (96m:22026)
  • 10. R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165. MR 0289724 (44:6912)
  • 11. R. Gangolli and V.S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer-Verlag, 1988. MR 954385 (89m:22015)
  • 12. Y. Guivarc'h, L. Ji and J.C. Taylor, Compactifications of symmetric spaces, Birkhäuser, 1998. MR 1633171 (2000c:31006)
  • 13. Harish-Chandra, Spherical functions on a semisimple Lie group, I., Amer. J. Math. 8 (1954), 241-310. MR 0094407 (20:925)
  • 14. S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • 15. S. Helgason, Differential Geometry, Lie groups, and Symmetric Spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • 16. S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys & Monographs 39, Amer. Math. Soc., 1994. MR 1280714 (96h:43009)
  • 17. L. Hörmander, Estimates for translation invariant operators in $ L^p$ spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • 18. A.D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), 274-300. MR 1767376 (2001h:43009)
  • 19. A.D. Ionescu, Singular integrals on symmetric spaces of real rank one, Duke Math. J. 114 (2002), 101-122. MR 1915037 (2003c:43008)
  • 20. A.D. Ionescu, Singular integrals on symmetric spaces, II, Trans. Amer. Math. Soc. 335 (2003), 3359-3378. MR 1974692 (2004b:43009)
  • 21. R.J. Stanton, P.A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-276. MR 0511124 (58:23365)
  • 22. E.M. Stein, Harmonic Analysis. Real variable methods, orthogonality and oscillatory integrals, Princeton Math. Series No. 43, Princeton N.J., 1993. MR 1232192 (95c:42002)
  • 23. J.-O. Strömberg, Weak type $ L^1$ estimates for maximal functions on non-compact symmetric spaces, Ann. of Math. 114 (1981), 115-126. MR 625348 (82k:43010)
  • 24. M.E. Taylor, $ L^p$ estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793. MR 1016445 (91d:58253)
  • 25. P.C. Trombi and V.S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. of Math. 94 (1971), 246-303. MR 0289725 (44:6913)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42B15, 53C35, 32A55

Retrieve articles in all journals with MSC (2000): 42B15, 53C35, 32A55


Additional Information

Stefano Meda
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Email: stefano.meda@unimib.it

Maria Vallarino
Affiliation: Laboratoire de Mathématiques et Applications, Physique Mathématiques d’Orléans, Université d’Orléans, UFR Sciences, Bâtiment de Mathématique-Route de Chartres, B.P. 6759, 45067 Orléans cedex 2, France
Address at time of publication: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Email: maria.vallarino@unimib.it

DOI: https://doi.org/10.1090/S0002-9947-10-05082-8
Received by editor(s): February 14, 2008
Published electronically: January 4, 2010
Additional Notes: This work was partially supported by the Italian Progetto PRIN “Analisi Armonica” 2007–2008.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society