Singular surfaces, mod 2 homology, and hyperbolic volume, I
Authors:
Ian Agol, Marc Culler and Peter B. Shalen
Journal:
Trans. Amer. Math. Soc. 362 (2010), 34633498
MSC (2000):
Primary 57M50
Published electronically:
February 2, 2010
MathSciNet review:
2601597
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If is a simple, closed, orientable manifold such that contains a genus surface group, and if has rank at least , we show that contains an embedded closed incompressible surface of genus at most . As an application we show that if is a closed orientable hyperbolic manifold of volume at most , then the rank of is at most .
 1.
Ian Agol, Tameness of hyperbolic manifolds, arXiv:math/0405568v1[math.GT].
 2.
Ian
Agol, Peter
A. Storm, and William
P. Thurston, Lower bounds on volumes of hyperbolic
Haken 3manifolds, J. Amer. Math. Soc.
20 (2007), no. 4,
1053–1077. With an appendix by Nathan Dunfield. MR 2328715
(2008i:53086), 10.1090/S0894034707005644
 3.
James
W. Anderson, Richard
D. Canary, Marc
Culler, and Peter
B. Shalen, Free Kleinian groups and volumes of hyperbolic
3manifolds, J. Differential Geom. 43 (1996),
no. 4, 738–782. MR 1412683
(98c:57012)
 4.
Danny
Calegari and David
Gabai, Shrinkwrapping and the taming of
hyperbolic 3manifolds, J. Amer. Math. Soc.
19 (2006), no. 2,
385–446. MR 2188131
(2006g:57030), 10.1090/S0894034705005138
 5.
Marc Culler and Peter B. Shalen, Singular surfaces, mod homology, and hyperbolic volume, II, arXiv:math/070166v5[math.GT].
 6.
Marc
Culler and Peter
B. Shalen, Paradoxical decompositions,
2generator Kleinian groups, and volumes of hyperbolic
3manifolds, J. Amer. Math. Soc.
5 (1992), no. 2,
231–288. MR 1135928
(93a:57017), 10.1090/S08940347199211359284
 7.
David
Gabai, Foliations and the topology of 3manifolds, J.
Differential Geom. 18 (1983), no. 3, 445–503.
MR 723813
(86a:57009)
 8.
John
Hempel, 3manifolds, AMS Chelsea Publishing, Providence, RI,
2004. Reprint of the 1976 original. MR 2098385
(2005e:57053)
 9.
William
Jaco and Peter
B. Shalen, Peripheral structure of 3manifolds, Invent. Math.
38 (1976), no. 1, 55–87. MR 0428332
(55 #1357)
 10.
William
Meeks III, Leon
Simon, and Shing
Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds
with positive Ricci curvature, Ann. of Math. (2) 116
(1982), no. 3, 621–659. MR 678484
(84f:53053), 10.2307/2007026
 11.
C.
D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of
knots, Ann. of Math. (2) 66 (1957), 1–26. MR 0090053
(19,761a)
 12.
Grisha Perelman, Ricci flow with surgery on threemanifolds, arXiv:math/ 0303109v1[math.DG].
 13.
Peter
B. Shalen and Philip
Wagreich, Growth rates,
𝑍_{𝑝}homology, and volumes of hyperbolic
3manifolds, Trans. Amer. Math. Soc.
331 (1992), no. 2,
895–917. MR 1156298
(93d:57002), 10.1090/S00029947199211562988
 14.
Arnold
Shapiro and J.
H. C. Whitehead, A proof and extension of Dehn’s
lemma, Bull. Amer. Math. Soc. 64 (1958), 174–178. MR 0103474
(21 #2242), 10.1090/S000299041958101986
 15.
Jonathan
Simon, Compactification of covering spaces of compact
3manifolds, Michigan Math. J. 23 (1976), no. 3,
245–256 (1977). MR 0431176
(55 #4178)
 16.
John
Stallings, On the loop theorem, Ann. of Math. (2)
72 (1960), 12–19. MR 0121796
(22 #12526)
 17.
John
Stallings, Homology and central series of groups, J. Algebra
2 (1965), 170–181. MR 0175956
(31 #232)
 18.
Friedhelm
Waldhausen, On irreducible 3manifolds which are sufficiently
large, Ann. of Math. (2) 87 (1968), 56–88. MR 0224099
(36 #7146)
 19.
Jeff Weeks and Craig Hodgson, ClosedCensusInvariants.txt, downloadable text file.
 1.
 Ian Agol, Tameness of hyperbolic manifolds, arXiv:math/0405568v1[math.GT].
 2.
 Ian Agol, Peter A. Storm, and William P. Thurston, Lower bounds on volumes of hyperbolic Haken manifolds, J. Amer. Math. Soc. 20 (2007), no. 4, 10531077 (electronic). With an appendix by Nathan Dunfield. MR 2328715
 3.
 James W. Anderson, Richard D. Canary, Marc Culler, and Peter B. Shalen, Free Kleinian groups and volumes of hyperbolic manifolds, J. Differential Geom. 43 (1996), no. 4, 738782. MR 1412683 (98c:57012)
 4.
 Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385446 (electronic). MR 2188131 (2006g:57030)
 5.
 Marc Culler and Peter B. Shalen, Singular surfaces, mod homology, and hyperbolic volume, II, arXiv:math/070166v5[math.GT].
 6.
 Marc Culler and Peter B. Shalen, Paradoxical decompositions, generator Kleinian groups, and volumes of hyperbolic manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 231288. MR 1135928 (93a:57017)
 7.
 David Gabai, Foliations and the topology of manifolds, J. Differential Geom. 18 (1983), no. 3, 445503. MR 723813 (86a:57009)
 8.
 John Hempel, manifolds, AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976 original. MR 2098385 (2005e:57053)
 9.
 William Jaco and Peter B. Shalen, Peripheral structure of manifolds, Invent. Math. 38 (1976), no. 1, 5587. MR 0428332 (55:1357)
 10.
 William Meeks, III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621659. MR 678484 (84f:53053)
 11.
 C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 126. MR 0090053 (19:761a)
 12.
 Grisha Perelman, Ricci flow with surgery on threemanifolds, arXiv:math/ 0303109v1[math.DG].
 13.
 Peter B. Shalen and Philip Wagreich, Growth rates, homology, and volumes of hyperbolic manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 895917. MR 1156298 (93d:57002)
 14.
 Arnold Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174178. MR 0103474 (21:2242)
 15.
 Jonathan Simon, Compactification of covering spaces of compact manifolds, Michigan Math. J. 23 (1976), no. 3, 245256 (1977). MR 0431176 (55:4178)
 16.
 John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 1219. MR 0121796 (22:12526)
 17.
 , Homology and central series of groups, J. Algebra 2 (1965), 170181. MR 0175956 (31:232)
 18.
 Friedhelm Waldhausen, On irreducible manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 5688. MR 0224099 (36:7146)
 19.
 Jeff Weeks and Craig Hodgson, ClosedCensusInvariants.txt, downloadable text file.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
57M50
Retrieve articles in all journals
with MSC (2000):
57M50
Additional Information
Ian Agol
Affiliation:
Department of Mathematics, University of California, Berkeley, 970 Evans Hall, Berkeley, California 947203840
Email:
ianagol@math.berkeley.edu
Marc Culler
Affiliation:
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 606077045
Email:
culler@math.uic.edu
Peter B. Shalen
Affiliation:
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 606077045
Email:
shalen@math.uic.edu
DOI:
http://dx.doi.org/10.1090/S000299471004362X
Received by editor(s):
July 3, 2005
Received by editor(s) in revised form:
February 2, 2008
Published electronically:
February 2, 2010
Additional Notes:
This work was partially supported by NSF grants DMS0204142 and DMS0504975
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
