Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Density results for automorphic forms on Hilbert modular groups II


Authors: Roelof W. Bruggeman and Roberto J. Miatello
Journal: Trans. Amer. Math. Soc. 362 (2010), 3841-3881
MSC (2000): Primary 11F30, 11F41, 11F72, 22E30
DOI: https://doi.org/10.1090/S0002-9947-10-04974-3
Published electronically: February 24, 2010
MathSciNet review: 2601612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain an asymptotic formula for a weighted sum over cuspidal eigenvalues in a specific region, for $ \mathrm{SL}_2$ over a totally real number field $ F$, with a discrete subgroup of Hecke type $ \Gamma_0(I)$ for a non-zero ideal $ I$ in the ring of integers of $ F$. The weights are products of Fourier coefficients. This implies in particular the existence of infinitely many cuspidal automorphic representations with multi-eigenvalues in various regions growing to infinity. For instance, in the quadratic case, the regions include floating boxes, floating balls, sectors, slanted strips (see §1.2.4-1.2.13) and products of prescribed small intervals for all but one of the infinite places of $ F$. The main tool in the derivation is a sum formula of Kuznetsov type (Sum formula for SL$ _2$ over a totally real number field, Theorem 2.1).


References [Enhancements On Off] (What's this?)

  • 1. R.W. Bruggeman, Fourier coefficients of cusp forms, Inv. Math. 45 (1978) 1-18 MR 0472701 (57:12394)
  • 2. R.W. Bruggeman, R.J. Miatello, I. Pacharoni, Density results for automorphic forms on Hilbert modular groups, Geometric and Functional Analysis 13 (2003) 681-719 MR 2006554 (2004k:11066)
  • 3. R.W. Bruggeman, R.J. Miatello, Sum formula for $ \mathrm{SL}_2$ over a totally real number field, Memoirs Amer. Math. Soc. 197 (2009) no. 919 MR 2489364
  • 4. R.W. Bruggeman, R.J. Miatello, Distribution of square integrable automorphic forms on Hilbert modular groups, Geometry, analysis and topology of discrete groups, 19-39, Adv. Lect. Math. (ALM), 6, Int. Press, Somerville, MA, 2008. MR 2464392
  • 5. H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geometry 17 (1982) 239-253 MR 664496 (83m:58079)
  • 6. J.J. Duistermaat, J.A.C. Kolk, V.S. Varadajan, Spectra of Compact locally Symmetric Manifolds of Negative Curvature, Inv. Math. 52 (1979) 27-93 MR 532745 (82a:58050a)
  • 7. I.Y. Efrat, The Selberg trace formula for $ \mathrm{PSL}_2(\mathbb{R})^n$, Memoirs Amer. Math. Soc. 359 (1987) 1-110 MR 874084 (88e:11041)
  • 8. D.A. Hejhal, The Selberg trace formula for $ \mathrm{PSL}(2,\mathbb{R})$, Lect. Notes in Math. 1001, Springer-Verlag, 1983 MR 711197 (86e:11040)
  • 9. J. Huntley, Spectral multiplicity on products of hyperbolic spaces, Proc. AMS 111 (1991) 1-12 MR 1031667 (91d:11055)
  • 10. J. Huntley, D. Tepper, A local Weyl's law, the angular distribution and multiplicity of cusp forms on product spaces, Trans. AMS 330 (1992) 97-110 MR 1053114 (92f:11071)
  • 11. A. Ivić, M. Jutila, On the moment of Hecke series at central points. II, Funct. Approx. Comment. Math. 31 (2003) 93-108 MR 2059539 (2005g:11076)
  • 12. M. Jutila, Y. Motohashi, Uniform bounds for Hecke $ L$-functions, Acta Math. 195 (2005) 61-115 MR 2233686 (2007d:11051)
  • 13. H.H. Kim, F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002) 177-197 MR 1890650 (2003a:11057)
  • 14. J.P. Labesse, W. Müller, Weak Weyl's law for congruence subgroups, Asian J. Math. 8 (2004) 733-746 MR 2127945 (2006a:11064)
  • 15. S. Lang, $ \mathrm{SL}_2(\mathbb{R})$, Addison-Wesley, 1975 MR 0430163 (55:3170)
  • 16. E. Lapid, W. Müller, Spectral asymptotic for arithmetic quotients of $ \mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$, arXiv:0711.2925v1 [math.RT]
  • 17. E. Lindenstrauss, A. Venkatesh, Existence and Weyl's law for spherical cusp forms, Geom. Funct. Anal. 17 (2007) 220-251 MR 2306657 (2008c:22016)
  • 18. Lizhen Ji, The Weyl upper bound on the discrete spectrum of locally symmetric spaces, J. Diff. Geometry 51 (199) 97-147 MR 1703605 (2001a:11087)
  • 19. S.D. Miller, On the existence and temperedness of cusp forms for $ \mathrm{SL}_3(\mathbb{Z})$, J. Reine Angew. Math. 533 (2001) 127-169 MR 1823867 (2002b:11070)
  • 20. W. Müller, Weyl's law for the cuspidal spectrum of $ \mathrm{SL}_n$, C.R. Acad. Sci. Paris 338 (5) (2004) 347-352 MR 2057162 (2005a:22006)
  • 21. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series, Jour. Indian Math. Soc. (N.S.) 20 (1956) 47-87 MR 0088511 (19:531g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11F30, 11F41, 11F72, 22E30

Retrieve articles in all journals with MSC (2000): 11F30, 11F41, 11F72, 22E30


Additional Information

Roelof W. Bruggeman
Affiliation: Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, NL-3508 TA Utrecht, Nederland
Email: bruggeman@math.uu.nl

Roberto J. Miatello
Affiliation: FaMAF-CIEM, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
Email: miatello@mate.uncor.edu

DOI: https://doi.org/10.1090/S0002-9947-10-04974-3
Received by editor(s): October 17, 2008
Published electronically: February 24, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society