Some regular symmetric pairs
Authors:
Avraham Aizenbud and Dmitry Gourevitch
Journal:
Trans. Amer. Math. Soc. 362 (2010), 37573777
MSC (2010):
Primary 20G05, 20G25, 22E45
Published electronically:
February 12, 2010
MathSciNet review:
2601608
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In an earlier paper we explored the question what symmetric pairs are Gelfand pairs. We introduced the notion of regular symmetric pair and conjectured that all symmetric pairs are regular. This conjecture would imply that many symmetric pairs are Gelfand pairs, including all connected symmetric pairs over . In this paper we show that the pairs , are regular, where and are quadratic or Hermitian spaces over an arbitrary local field of characteristic zero. We deduce from this that the pairs and are Gelfand pairs.
 [AG1]
Avraham
Aizenbud and Dmitry
Gourevitch, Schwartz functions on Nash manifolds, Int. Math.
Res. Not. IMRN 5 (2008), Art. ID rnm 155, 37. MR 2418286
(2010g:46124), http://dx.doi.org/10.1093/imrn/rnm155
 [AG2]
A. Aizenbud, D. Gourevitch (with an appendix by A. Aizenbud, D. Gourevitch and E. Sayag): Generalized HarishChandra descent, Gelfand pairs and an Archimedean analog of JacquetRallis' Theorem, postprint: arXiv:0812.5063v4[math.RT]. Originally published in: Duke Mathematical Journal, Volume 149, Number 3, pp. 509567 (2009).
 [AGS]
A. Aizenbud, D. Gourevitch, E. Sayag : is a Gelfand pair for any local field , postprint: arXiv:0709.1273v4[math.RT]. Originally published in: Compositio Mathematica, 144, pp. 15041524 (2008), doi:10.1112/S0010437X08003746.
 [BvD]
E.
P. H. Bosman and G.
van Dijk, A new class of Gel′fand pairs, Geom. Dedicata
50 (1994), no. 3, 261–282. MR 1286380
(95j:22025), http://dx.doi.org/10.1007/BF01267869
 [BZ]
I.
N. Bernšteĭn and A.
V. Zelevinskiĭ, Representations of the group
𝐺𝐿(𝑛,𝐹), where 𝐹 is a local
nonArchimedean field, Uspehi Mat. Nauk 31 (1976),
no. 3(189), 5–70 (Russian). MR 0425030
(54 #12988)
 [GK]
I.
M. Gel′fand and D.
A. Kajdan, Representations of the group
𝐺𝐿(𝑛,𝐾) where 𝐾 is a local
field, Lie groups and their representations (Proc. Summer School,
Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975,
pp. 95–118. MR 0404534
(53 #8334)
 [Gro]
Benedict
H. Gross, Some applications of Gel′fand
pairs to number theory, Bull. Amer. Math. Soc.
(N.S.) 24 (1991), no. 2, 277–301. MR 1074028
(91i:11055), http://dx.doi.org/10.1090/S027309791991160179
 [MVW]
Colette
Mœglin, MarieFrance
Vignéras, and JeanLoup
Waldspurger, Correspondances de Howe sur un corps
𝑝adique, Lecture Notes in Mathematics, vol. 1291,
SpringerVerlag, Berlin, 1987 (French). MR 1041060
(91f:11040)
 [SpSt]
T.
A. Springer and R.
Steinberg, Conjugacy classes, Seminar on Algebraic Groups and
Related Finite Groups (The Institute for Advanced Study, Princeton, N.J.,
1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970,
pp. 167–266. MR 0268192
(42 #3091)
 [vD]
G.
van Dijk, On a class of generalized Gel′fand pairs,
Math. Z. 193 (1986), no. 4, 581–593. MR 867349
(87m:22041), http://dx.doi.org/10.1007/BF01160476
 [AG1]
 A. Aizenbud, D. Gourevitch, Schwartz functions on Nash Manifolds, Int. Math. Res. Not. IMRN 2008, no. 5, Art. ID rnm 155, 37 pp. MR 2418286
 [AG2]
 A. Aizenbud, D. Gourevitch (with an appendix by A. Aizenbud, D. Gourevitch and E. Sayag): Generalized HarishChandra descent, Gelfand pairs and an Archimedean analog of JacquetRallis' Theorem, postprint: arXiv:0812.5063v4[math.RT]. Originally published in: Duke Mathematical Journal, Volume 149, Number 3, pp. 509567 (2009).
 [AGS]
 A. Aizenbud, D. Gourevitch, E. Sayag : is a Gelfand pair for any local field , postprint: arXiv:0709.1273v4[math.RT]. Originally published in: Compositio Mathematica, 144, pp. 15041524 (2008), doi:10.1112/S0010437X08003746.
 [BvD]
 E. E H. Bosman and G. Van Dijk, A New Class of Gelfand Pairs, Geom. Dedicata 50 (1994), no. 3, 261282. MR 1286380 (95j:22025)
 [BZ]
 J. Bernstein, A.V. Zelevinsky, Representations of the group , where is a local nonArchimedean field, Uspekhi Mat. Nauk 31 (1976), No.3, 570. MR 0425030 (54:12988)
 [GK]
 I.M. Gelfand, D. Kazhdan, Representations of the group where is a local field, Lie groups and their representations (Proc. Summer School, Bolyai Janos Math. Soc., Budapest, 1971), pp. 95118. Halsted, New York (1975). MR 0404534 (53:8334)
 [Gro]
 B. Gross, Some applications of Gelfand pairs to number theory, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 277301. MR 1074028 (91i:11055)
 [MVW]
 Colette Mœglin, MarieFrance Vigneras, JeanLoup Waldspurger, Correspondances de Howe sur un corps adique. (French) [Howe correspondences over a adic field] Lecture Notes in Mathematics, 1291, SpringerVerlag, Berlin, 1987. viii+163 pp. MR 1041060 (91f:11040)
 [SpSt]
 T. A. Springer, R. Steinberg, Conjugacy classes. 1970 Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) pp. 167266. Lecture Notes in Mathematics, Vol. 131, Springer, Berlin. MR 0268192 (42:3091)
 [vD]
 G. van Dijk, On a class of generalized Gelfand pairs, Math. Z. 193 (1986), 581593. MR 0867349 (87m:22041)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
20G05,
20G25,
22E45
Retrieve articles in all journals
with MSC (2010):
20G05,
20G25,
22E45
Additional Information
Avraham Aizenbud
Affiliation:
Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel
Email:
aizenr@yahoo.com
Dmitry Gourevitch
Affiliation:
Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel
Address at time of publication:
School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Email:
guredim@yahoo.com
DOI:
http://dx.doi.org/10.1090/S0002994710050087
PII:
S 00029947(10)050087
Keywords:
Uniqueness,
multiplicity one,
Gelfand pair,
symmetric pair,
unitary group,
orthogonal group
Received by editor(s):
September 11, 2008
Published electronically:
February 12, 2010
Additional Notes:
Both authors were partially supported by a BSF grant, a GIF grant, and an ISF Center of excellency grant. The first author was also supported by ISF grant No. 583/09 and the second author by NSF grant DMS0635607. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
