Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rank two filtered $ (\varphi,N)$-modules with Galois descent data and coefficients


Author: Gerasimos Dousmanis
Journal: Trans. Amer. Math. Soc. 362 (2010), 3883-3910
MSC (2000): Primary 11F80
DOI: https://doi.org/10.1090/S0002-9947-10-05100-7
Published electronically: February 17, 2010
MathSciNet review: 2601613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be any finite extension of $ \mathbb{Q}_{p},$ $ L$ any finite Galois extension of $ K$, and $ E$ any finite large enough coefficient field containing $ L.$ We classify two-dimensional $ L$ -semistable $ E$-representations of $ G_{K}$ by listing the isomorphism classes of rank two weakly admissible filtered $ (\varphi ,N,L/K,E)$-modules.


References [Enhancements On Off] (What's this?)

  • [BE04a] Berger, Laurent An introduction to the theory of $ p$-adic representations. Geometric aspects of Dwork theory. Vols. I, II, 255-292, Walter de Gruyter GmbH & Co. KG, Berlin, 2004. MR 2023292 (2005h:11265)
  • [BE04b] Berger, Laurent Représentations $ p$-adiques et équations différentielles. Invent. Math. 148 (2002), no. 2, 219-284. MR 1906150 (2004a:14022)
  • [BR03] Breuil, Christophe Sur quelques représentations modulaires et $ p$-adiques de $ GL_{2}( \par \mathbb{Q} \par _{p})$ II. J. Inst. Math. Jussieu 2 (2003), no. 1, 23-58. MR 1955206 (2005d:11079)
  • [BM02] Breuil, Christophe; Mézard, Ariane Multiplicités modulaires et représentations de $ GL_{2}(\mathbb{Z}_{p})$ et de Gal $ (\bar{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ en $ l=p.$ With an appendix by Guy Henniart. Duke Math. J. 115 (2002), no. 2, 205-310. MR 1944572 (2004i:11052)
  • [BS06] Breuil, Christophe; Schneider, Peter First steps towards $ p$-adic Langlands functoriality. J. Reine Angew. Math. 610 (2007), 149-180. MR 2359853 (2009f:11147)
  • [CF00] Colmez, Pierre; Fontaine, Jean-Marc Construction des représentations $ p$-adiques semi-stables. Invent. Math. 140 (2000), no. 1, 1-43. MR 1779803 (2001g:11184)
  • [CDT99] Conrad, Brian; Diamond, Fred; Taylor, Richard Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc. 12 (1999), no. 2, 521-567. MR 1639612 (99i:11037)
  • [DO08] Dousmanis, Gerasimos On reductions of families of two-dimensional crystalline Galois representations. http://arxiv.org/abs/0805.1634 arXiv:0805.1634v3
  • [DO09] Dousmanis, Gerasimos On reductions of families of two-dimensional crystalline Galois representations part II. http://arxiv.org/abs/0905.0080 arXiv:0905.0080v1
  • [FO88] Fontaine, Jean-Marc Le corps des périodes $ p$-adiques. Périodes $ p$-adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 59-111. MR 1293971 (95k:11086)
  • [FO94] Fontaine, Jean-Marc Représentations $ l$-adiques potentiellement semi-stables. Périodes $ p$-adiques (Bures-sur-Yvette, 1988). Astérisque No. 223 (1994), 321-347. MR 1293977 (95k:14031)
  • [FM95] Fontaine, Jean-Marc; Mazur, Barry Geometric Galois representations. Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), 41-78, Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995. MR 1363495 (96h:11049)
  • [FOO08] Fontaine, Jean-Marc; Ouyang, Yi Theory of $ p$-adic Galois Representations. Forthcoming Springer book.
  • [GM09] Ghate, Eknath; Mézard, Ariane Filtered modules with coefficients. Trans. Amer. Math. Soc. 361 (2009), no. 5, 2243-2261. MR 2471916
  • [SAV05] Savitt, David On a conjecture of Conrad, Diamond, and Taylor. Duke Math. J. 128 (2005), no. 1, 141-197. MR 2137952 (2006c:11060)
  • [VO01] Volkov, Maja Les représentations $ l$-adiques associées aux courbes elliptiques sur $ \par \mathbb{Q} \par _{p}. $J. Reine Angew. Math. 535, (2001), 65-101. MR 1837096 (2002d:11067)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11F80

Retrieve articles in all journals with MSC (2000): 11F80


Additional Information

Gerasimos Dousmanis
Affiliation: SFB 478 Geometrische Strukturen in der Mathematik, Münster Universität, Hittorfstraße 27, 48149, Münster, Deutschland
Email: makis.dousmanis@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-10-05100-7
Received by editor(s): January 11, 2009
Published electronically: February 17, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society