Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A generalized Mazur's theorem and its applications

Author: Ki-Seng Tan
Journal: Trans. Amer. Math. Soc. 362 (2010), 4433-4450
MSC (2010): Primary 11R23, 11S25
Published electronically: March 17, 2010
MathSciNet review: 2608412
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize a theorem of Mazur concerning the universal norms of an abelian variety over a $ \mathbb{Z}_p^d$-extension of a complete local field. Then we apply it to the proof of a control theorem for abelian varieties over global function fields.

References [Enhancements On Off] (What's this?)

  • [BL06] A. Bandini and I. Longhi, Control theorems for elliptic curves over function fields, International Journal of Number Theory 5(2009), 229-256. MR 2502807
  • [BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Springer-Verlag, Berlin, Heidelberg, 1990. MR 1045822 (91i:14034)
  • [Cho52] W.-L. Chow, On the quotient variety of an abelian variety, Proc. Natl. Acad. Sci., Vol. 38(1952), 1039-1044. MR 0052156 (14:580c)
  • [Ger72] L. Gerritzen, On non-Archinedean representations of abelian varieties, Math. Ann. 196(1972), 323-346. MR 0308132 (46:7247)
  • [GkR96] U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves, J. reine angew. Math. 476(1996), 27-93. MR 1401696 (97f:11043)
  • [Gre03] R. Greenberg, Galois theory for the Selmer group for an abelian variety, Compositio Math. 136(2003), 255-297. MR 1977007 (2004c:11097)
  • [Gth72] A. Grothendieck, Groupes de monodromie en Géométrie Algébrique. I. Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I). Lecture Notes in Math. 288. Springer, Heidelberg, 1972. MR 0354656 (50:7134)
  • [Jon91] J. Jones, On the local norm map for abelian varieties with good ordinary reduction, J. Algebra 138 no.2(2003), 420-423. MR 1102817 (92d:11062)
  • [Maz72] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18(1972), 183-266. MR 0444670 (56:3020)
  • [Mil70/72] J.S. Milne, Weil-Chatelet groups over local fields, Ann. Sci. Ecole Norm. Sup. 3 (1970), 273-284; ibid., 5 (1972), 261-264. MR 0276249 (43:1996)
  • [Mil80] J.S. Milne, Étale Cohomology, Princeton University Press, Princeton, 1980. MR 559531 (81j:14002)
  • [Mil86] J.S. Milne, Arithmetic duality theorems, Academic Press, New York, 1986. MR 881804 (88e:14028)
  • [Mum68] D. Mumford, Biextension of formal groups, in the proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press, 1968.
  • [Mum74] D. Mumford, Abelian Varieties, Oxford Univ. Press, 1974. MR 0282985 (44:219)
  • [LuR78] J. Lubin and M. Rosen, The norm map for ordinary abelian varieties, J. Algebra 52(1978), 236-240. MR 0491735 (58:10936)
  • [OTr06] T. Ochiai and F. Trihan, On the Selmer groups of abelian varieties over function fields of characteristic $ p>0$, Mathematical Proceedings Cambridge Philosophical Society 146(2009), 23-43. MR 2461865
  • [OTr08] T. Ochiai and F. Trihan, On the Iwasawa main conjecture of abelian varieties over function fields of characteristic $ p>0$, manuscript 2008.
  • [Sha72] S. Shatz, Profinite Groups, Arithmetic, and Geometry. Annals of Math. Studies 67, Princeton University Press, Princeton, 1972. MR 0347778 (50:279)
  • [Sch83] P. Schneider, Iwasawa $ L$-functions of abelian varieties over algebraic number fields. A first approach, Invent. Math. 71 (1983), 251-293. MR 689645 (85d:11063)
  • [Tat62] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math. Stockholm, 234-241.
  • [Tat67] J. Tate, Global Class Field Theory. In Algebraic Number Theory, J.W.S. Cassels and A. Fr $ {\ddot{\text{o}}}$lich, eds., Academic Press, 1967, 162-203. MR 0220697 (36:3749)
  • [Was82] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982. MR 718674 (85g:11001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11R23, 11S25

Retrieve articles in all journals with MSC (2010): 11R23, 11S25

Additional Information

Ki-Seng Tan
Affiliation: Department of Mathematics, National Taiwan University, Taipei 10764, Taiwan

Received by editor(s): December 4, 2008
Received by editor(s) in revised form: March 6, 2009
Published electronically: March 17, 2010
Additional Notes: This research was supported in part by the National Science Council of Taiwan, NSC95-2115-M-002-017-MY2.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society