Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Morse-Bott homology


Authors: Augustin Banyaga and David E. Hurtubise
Journal: Trans. Amer. Math. Soc. 362 (2010), 3997-4043
MSC (2010): Primary 57R70; Secondary 58E05, 57R58, 37D15
DOI: https://doi.org/10.1090/S0002-9947-10-05073-7
Published electronically: March 23, 2010
MathSciNet review: 2608393
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of the Morse Homology Theorem by constructing a chain complex associated to a Morse-Bott-Smale function that reduces to the Morse-Smale-Witten chain complex when the function is Morse-Smale and to the chain complex of smooth singular $ N$-cube chains when the function is constant. We show that the homology of the chain complex is independent of the Morse-Bott-Smale function by using compactified moduli spaces of time dependent gradient flow lines to prove a Floer-type continuation theorem.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1-15. MR 83e:53037
  • 2. M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615. MR 85k:14006
  • 3. Michèle Audin, Torus actions on symplectic manifolds, revised ed., Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 2004. MR 2091310 (2005k:53158)
  • 4. David M. Austin and Peter J. Braam, Morse-Bott theory and equivariant cohomology, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 123-183. MR 1362827 (96i:57037)
  • 5. -, Equivariant Floer theory and gluing Donaldson polynomials, Topology 35 (1996), no. 1, 167-200. MR 1367280 (97e:57037)
  • 6. Augustin Banyaga and David E. Hurtubise, The Morse-Bott inequalities via a dynamical systems approach, Ergodic Theory Dynam. Systems 29 (2009), no. 6, 1693-1703. MR 2563088
  • 7. -, Lectures on Morse homology, Kluwer Texts in the Mathematical Sciences, vol. 29, Kluwer Academic Publishers Group, Dordrecht, 2004. MR 2145196 (2006i:58016)
  • 8. -, A proof of the Morse-Bott lemma, Expo. Math. 22 (2004), no. 4, 365-373. MR 2075744 (2005b:57062)
  • 9. Jean-François Barraud and Octav Cornea, Lagrangian intersections and the Serre spectral sequence, Ann. of Math. (2) 166 (2007), no. 3, 657-722. MR 2373371 (2008j:53149)
  • 10. Stefan Bauer, Electronic posting, Topology Listserv (2005).
  • 11. Raoul Bott, Non-Degenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261. MR 0064399 (16:276f)
  • 12. Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. MR 0105694 (21:4430)
  • 13. F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888 (electronic). MR 2026549 (2004m:53152)
  • 14. Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675 (94d:55001)
  • 15. J. L. Bryant, Triangulation and general position of PL diagrams, Topology Appl. 34 (1990), no. 3, 211-233. MR 1042280 (91b:57032)
  • 16. S. K. Donaldson, Floer homology groups in Yang-Mills theory, Cambridge Tracts in Mathematics, vol. 147, Cambridge University Press, Cambridge, 2002. With the assistance of M. Furuta and D. Kotschick. MR 1883043 (2002k:57078)
  • 17. Michael Farber, Topology of closed one-forms, Mathematical Surveys and Monographs, vol. 108, American Mathematical Society, Providence, RI, 2004. MR 2034601 (2005c:58023)
  • 18. A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), no. 1, 13-38. MR 1200162 (94m:58036)
  • 19. Andreas Floer, An instanton-invariant for $ 3$-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215-240. MR 956166 (89k:57028)
  • 20. -, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. MR 90f:58058
  • 21. -, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575-611. MR 90e:58047
  • 22. Urs Frauenfelder, The Arnold-Givental conjecture and moment Floer homology, Int. Math. Res. Not. (2004), no. 42, 2179-2269. MR 2076142 (2005g:53174)
  • 23. Kenji Fukaya, Floer homology of connected sum of homology $ 3$-spheres, Topology 35 (1996), no. 1, 89-136. MR 1367277 (97d:57041)
  • 24. Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1-147. MR 697984 (85h:53029)
  • 25. F. Reese Harvey and H. Blaine Lawson, Jr., Finite volume flows and Morse theory, Ann. of Math. (2) 153 (2001), no. 1, 1-25. MR 1826410 (2002c:58018)
  • 26. H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory II: Implicit function theorems, Geom. Funct. Anal. To appear.
  • 27. -, A general Fredholm theory I: A splicing-based differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841-876. MR 2341834 (2008m:53202)
  • 28. David E. Hurtubise, The flow category of the action functional on $ \mathcal{L}G_{n,n+k}(\mathbb{C})$, Illinois J. Math. 44 (2000), no. 1, 33-50. MR 1731380 (2001i:57047)
  • 29. -, Multicomplexes and spectral sequences, J. Algebra Appl. To appear.
  • 30. Peter J. Kahn, Pseudohomology and homology, arXiv:math/0111223v1 (2001).
  • 31. Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 86i:58050
  • 32. Janko Latschev, Gradient flows of Morse-Bott functions, Math. Ann. 318 (2000), no. 4, 731-759. MR 1802508 (2001m:58026)
  • 33. Gang Liu and Gang Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 53-80. MR 1701133 (2001g:53154)
  • 34. Juan Margalef Roig and Enrique Outerelo Domínguez, Differential topology, North-Holland Mathematics Studies, vol. 173, North-Holland Publishing Co., Amsterdam, 1992. MR 1173211 (93g:58005)
  • 35. William S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. MR 1095046 (92c:55001)
  • 36. Dusa McDuff and Dietmar Salamon, $ J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629 (2004m:53154)
  • 37. Jean-Pierre Meyer, Acyclic models for multicomplexes, Duke Math. J. 45 (1978), no. 1, 67-85. MR 486489 (80b:55012)
  • 38. Lars Tyge Nielsen, Transversality and the inverse image of a submanifold with corners, Math. Scand. 49 (1981), no. 2, 211-221 (1982). MR 661891 (83m:57022)
  • 39. Yongbin Ruan and Gang Tian, Bott-type symplectic Floer cohomology and its multiplication structures, Math. Res. Lett. 2 (1995), no. 2, 203-219. MR 1324703 (96a:57074)
  • 40. Dietmar Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143-229. MR 2000g:53100
  • 41. Matthias Schwarz, Morse homology, Birkhäuser Verlag, Basel, 1993. MR 1239174 (95a:58022)
  • 42. -, Equivalences for Morse homology, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), Contemp. Math., vol. 246, Amer. Math. Soc., Providence, RI, 1999, pp. 197-216. MR 1732382 (2000j:57070)
  • 43. Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983. MR 722297 (84k:58001)
  • 44. Joa Weber, The Morse-Witten complex via dynamical systems, Expo. Math. 24 (2006), no. 2, 127-159. MR 2243274

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57R70, 58E05, 57R58, 37D15

Retrieve articles in all journals with MSC (2010): 57R70, 58E05, 57R58, 37D15


Additional Information

Augustin Banyaga
Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, University Park, Pennsylvania 16802
Email: banyaga@math.psu.edu

David E. Hurtubise
Affiliation: Department of Mathematics and Statistics, The Pennsylvania State University, Altoona, Altoona, Pennsylvania 16601-3760
Email: Hurtubise@psu.edu

DOI: https://doi.org/10.1090/S0002-9947-10-05073-7
Received by editor(s): October 11, 2007
Published electronically: March 23, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society