Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Cauchy problem for $ p$-evolution equations


Authors: Massimo Cicognani and Ferruccio Colombini
Journal: Trans. Amer. Math. Soc. 362 (2010), 4853-4869
MSC (2010): Primary 35G10, 35L15
DOI: https://doi.org/10.1090/S0002-9947-10-05171-8
Published electronically: April 28, 2010
MathSciNet review: 2645053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we deal with the Cauchy problem for evolution equations with real characteristics. We show that the problem is well-posed in Sobolev spaces assuming a suitable decay of the coefficients as the space variable $ x\to\infty$. In some cases, such a decay may also compensate a lack of regularity with respect to the time variable $ t$.


References [Enhancements On Off] (What's this?)

  • 1. Cicognani, M.; Colombini, F.: Sharp regularity of the coefficients in the Cauchy Problem for a class of evolution equations. Differential and Integral Equations 16 (2003), 1321-1344. MR 2016685 (2005a:35045)
  • 2. Cicognani, M.; Colombini, F.: Loss of Derivatives in Evolution Cauchy Problems. Ann. Univ. Ferrara 52 (2006), 271-280 (in memoria di Stefano Benvenuti). MR 2273098 (2008f:35039)
  • 3. Colombini, F.; De Giorgi, E.; Spagnolo, S.: Sur les équations hyperboliques avec des coefficients qui ne dependent que du temps. Ann. Sc. Norm. Sup. Pisa 6 (1979), 511-559. MR 553796 (81c:35077)
  • 4. Colombini, F.; Lerner, N.: Hyperbolic operators with non-Lipschitz coefficients. Duke Math. J. 77 (1995), 657-698. MR 1324638 (96d:35075)
  • 5. Colombini, F.; Métivier, G.: The Cauchy Problem for Wave Equations with non Lipschitz Coefficients; Application to continuation of solutions of some nonlinear wave equations. Ann. Sci. École Norm. Sup. 41 (2008), 177-220. MR 2468481 (2009k:35194)
  • 6. Ichinose, W.: Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J. Math. 21 (1984), 565-581. MR 759481 (86f:35060)
  • 7. Kajitani, K.; Baba, A.: The Cauchy problem for Schrödinger type equations. Bull. Sci. Math. 119 (1995), 459-473. MR 1354247 (96m:35060)
  • 8. Kumano-Go, H.: Pseudo-differential operators. The MIT Press, Cambridge, London, 1982.
  • 9. Mizohata, S.: On the Cauchy problem. Academic Press, Orlando, FL; Science Press, Beijing, 1985. MR 860041 (89a:35007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35G10, 35L15

Retrieve articles in all journals with MSC (2010): 35G10, 35L15


Additional Information

Massimo Cicognani
Affiliation: Facoltà di Ingegneria II, Via Genova, 181, 47023 Cesena, Italy
Address at time of publication: Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40127 Bologna, Italy
Email: cicognani@dm.unibo.it

Ferruccio Colombini
Affiliation: Dipartimento di Matematica, University of Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy
Email: colombini@dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9947-10-05171-8
Keywords: Evolution equations with real characteristics
Received by editor(s): February 17, 2009
Published electronically: April 28, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society