Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models

Author:
Wenxian Shen

Journal:
Trans. Amer. Math. Soc. **362** (2010), 5125-5168

MSC (2010):
Primary 35K55, 35K57; Secondary 35B15, 92D25

Published electronically:
May 10, 2010

MathSciNet review:
2657675

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Spatial spread and front propagation dynamics is one of the most important dynamical issues in KPP models. Such dynamics of KPP models in time independent or periodic media has been widely studied. Recently, the author of the current paper with Huang established some theoretical foundation for the study of spatial spread and front propagation dynamics of KPP models in time almost periodic and space periodic media. A notion of spreading speed intervals for such models was introduced in the above-mentioned paper and was shown to be the natural extension of the classical concept of the spreading speeds for time independent or periodic KPP models and that it could be used for more general time dependent KPP models. A notion of generalized propagating speed intervals of front solutions and a notion of traveling wave solutions to time almost periodic and space periodic KPP models were also introduced, which are the generalizations of wave speeds and traveling wave solutions in time independent or periodic KPP models.

The aim of the current paper is to gain some further qualitative and quantitative understanding of the spatial spread and front propagation dynamics of KPP models in time almost periodic and space periodic media. By applying the principal Lyapunov exponent and the principal Floquet bundle theory for time almost periodic parabolic equations, we provide various useful estimates for spreading and generalized propagating speeds for such KPP models. Under the so-called linear determinacy condition, we show that the spreading speed interval in any given direction is a singleton (called the spreading speed). Moreover, in such a case we establish a variational principle for the spreading speed and prove that there is a front solution of speed in a given direction if and only if is greater than or equal to the spreading speed in that direction. Both the estimates and variational principle provide important and efficient tools for the spreading speeds analysis as well as the spreading speeds computation. Based on the variational principle, the influence of time and space variation of the media on the spreading speeds is also discussed in this paper. It is shown that the time and space variation cannot slow down the spatial spread and that it indeed speeds up the spatial spread except in certain degenerate cases, which provides deep insights into the understanding of the influence of the inhomogeneity of the underline media on the spatial spread in KPP models.

**1.**Nicholas D. Alikakos, Peter W. Bates, and Xinfu Chen,*Periodic traveling waves and locating oscillating patterns in multidimensional domains*, Trans. Amer. Math. Soc.**351**(1999), no. 7, 2777–2805. MR**1467460**, 10.1090/S0002-9947-99-02134-0**2.**D. G. Aronson and H. F. Weinberger,*Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation*, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Springer, Berlin, 1975, pp. 5–49. Lecture Notes in Math., Vol. 446. MR**0427837****3.**D. G. Aronson and H. F. Weinberger,*Multidimensional nonlinear diffusion arising in population genetics*, Adv. in Math.**30**(1978), no. 1, 33–76. MR**511740**, 10.1016/0001-8708(78)90130-5**4.**Henri Berestycki and François Hamel,*Generalized travelling waves for reaction-diffusion equations*, Perspectives in nonlinear partial differential equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 101–123. MR**2373726**, 10.1090/conm/446/08627**5.**Henri Berestycki, François Hamel, and Nikolai Nadirashvili,*The speed of propagation for KPP type problems. I. Periodic framework*, J. Eur. Math. Soc. (JEMS)**7**(2005), no. 2, 173–213. MR**2127993**, 10.4171/JEMS/26**6.**H. Berestycki, F. Hamel, and N. Nadirashili, The speed of propagation for KPP type problems. II. General domains, preprint.**7.**Henri Berestycki, François Hamel, and Lionel Roques,*Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts*, J. Math. Pures Appl. (9)**84**(2005), no. 8, 1101–1146 (English, with English and French summaries). MR**2155900**, 10.1016/j.matpur.2004.10.006**8.**Xinfu Chen and Jong-Shenq Guo,*Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations*, J. Differential Equations**184**(2002), no. 2, 549–569. MR**1929888**, 10.1006/jdeq.2001.4153**9.**Xinfu Chen and Jong-Sheng Guo,*Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics*, Math. Ann.**326**(2003), no. 1, 123–146. MR**1981615**, 10.1007/s00208-003-0414-0**10.**Joseph G. Conlon and Charles R. Doering,*On travelling waves for the stochastic Fisher-Kolmogorov-Petrovsky-Piscunov equation*, J. Stat. Phys.**120**(2005), no. 3-4, 421–477. MR**2182316**, 10.1007/s10955-005-5960-2**11.**Freddy Dumortier, Nikola Popović, and Tasso J. Kaper,*The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off*, Nonlinearity**20**(2007), no. 4, 855–877. MR**2307884**, 10.1088/0951-7715/20/4/004**12.**Paul C. Fife and J. B. McLeod,*The approach of solutions of nonlinear diffusion equations to travelling front solutions*, Arch. Ration. Mech. Anal.**65**(1977), no. 4, 335–361. MR**0442480****13.**A. M. Fink,*Almost periodic differential equations*, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. MR**0460799****14.**R. Fisher, The wave of advance of advantageous genes,*Ann. of Eugenics*,**7**(1937), 335-369.**15.**Ju. Gertner and M. I. Freĭdlin,*The propagation of concentration waves in periodic and random media*, Dokl. Akad. Nauk SSSR**249**(1979), no. 3, 521–525 (Russian). MR**553200****16.**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****17.**Jong-Shenq Guo and François Hamel,*Front propagation for discrete periodic monostable equations*, Math. Ann.**335**(2006), no. 3, 489–525. MR**2221123**, 10.1007/s00208-005-0729-0**18.**F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decay and monotonicity, prepint.**19.**S. Heinze, G. Papanicolaou, and A. Stevens,*Variational principles for propagation speeds in inhomogeneous media*, SIAM J. Appl. Math.**62**(2001), no. 1, 129–148. MR**1857539**, 10.1137/S0036139999361148**20.**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****21.**J. H. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, preprint.**22.**W. Hudson and B. Zinner,*Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media*, Boundary value problems for functional-differential equations, World Sci. Publ., River Edge, NJ, 1995, pp. 187–199. MR**1375475****23.**William Hudson and Bertram Zinner,*Existence of traveling waves for a generalized discrete Fisher’s equation*, Comm. Appl. Nonlinear Anal.**1**(1994), no. 3, 23–46. MR**1295491****24.**Juraj Húska,*Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains*, J. Differential Equations**226**(2006), no. 2, 541–557. MR**2237690**, 10.1016/j.jde.2006.02.008**25.**Juraj Húska,*Exponential separation and principal Floquet bundles for linear parabolic equations on general bounded domains: the divergence case*, Indiana Univ. Math. J.**55**(2006), no. 3, 1015–1043. MR**2244596**, 10.1512/iumj.2006.55.2868**26.**Juraj Húska and Peter Poláčik,*The principal Floquet bundle and exponential separation for linear parabolic equations*, J. Dynam. Differential Equations**16**(2004), no. 2, 347–375. MR**2105779**, 10.1007/s10884-004-2784-8**27.**Juraj Húska, Peter Poláčik, and Mikhail V. Safonov,*Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations*, Ann. Inst. H. Poincaré Anal. Non Linéaire**24**(2007), no. 5, 711–739 (English, with English and French summaries). MR**2348049**, 10.1016/j.anihpc.2006.04.006**28.**V. Hutson, W. Shen, and G. T. Vickers,*Estimates for the principal spectrum point for certain time-dependent parabolic operators*, Proc. Amer. Math. Soc.**129**(2001), no. 6, 1669–1679 (electronic). MR**1814096**, 10.1090/S0002-9939-00-05808-1**29.**Russell A. Johnson, Kenneth J. Palmer, and George R. Sell,*Ergodic properties of linear dynamical systems*, SIAM J. Math. Anal.**18**(1987), no. 1, 1–33. MR**871817**, 10.1137/0518001**30.**Yoshinori Kametaka,*On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type*, Osaka J. Math.**13**(1976), no. 1, 11–66. MR**0422875****31.**A. Kolmogorov, I. Petrowsky, and N. Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem.*Bjul. Moskovskogo Gos. Univ.*,**1**(1937), 1-26.**32.**Mark A. Lewis, Bingtuan Li, and Hans F. Weinberger,*Spreading speed and linear determinacy for two-species competition models*, J. Math. Biol.**45**(2002), no. 3, 219–233. MR**1930975**, 10.1007/s002850200144**33.**Bingtuan Li, Hans F. Weinberger, and Mark A. Lewis,*Spreading speeds as slowest wave speeds for cooperative systems*, Math. Biosci.**196**(2005), no. 1, 82–98. MR**2156610**, 10.1016/j.mbs.2005.03.008**34.**Xing Liang and Xiao-Qiang Zhao,*Asymptotic speeds of spread and traveling waves for monotone semiflows with applications*, Comm. Pure Appl. Math.**60**(2007), no. 1, 1–40. MR**2270161**, 10.1002/cpa.20154**35.**Xing Liang, Yingfei Yi, and Xiao-Qiang Zhao,*Spreading speeds and traveling waves for periodic evolution systems*, J. Differential Equations**231**(2006), no. 1, 57–77. MR**2287877**, 10.1016/j.jde.2006.04.010**36.**Roger Lui,*Biological growth and spread modeled by systems of recursions. I. Mathematical theory*, Math. Biosci.**93**(1989), no. 2, 269–295. MR**984281**, 10.1016/0025-5564(89)90026-6**37.**Shiwang Ma and Xingfu Zou,*Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay*, J. Differential Equations**217**(2005), no. 1, 54–87. MR**2170528**, 10.1016/j.jde.2005.05.004**38.**Andrew J. Majda and Panagiotis E. Souganidis,*Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales*, Nonlinearity**7**(1994), no. 1, 1–30. MR**1260130****39.**Andrew J. Majda and Panagiotis Souganidis,*Flame fronts in a turbulent combustion model with fractal velocity fields*, Comm. Pure Appl. Math.**51**(1998), no. 11-12, 1337–1348. MR**1639220**, 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.3.CO;2-2**40.**H. Matano, Talks presented at various conferences.**41.**Janusz Mierczyński and Wenxian Shen,*Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations*, J. Differential Equations**191**(2003), no. 1, 175–205. MR**1973287**, 10.1016/S0022-0396(03)00016-0**42.**J. Mierczyński and W. Shen, ``Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications,'' Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 2008.**43.**Carl Mueller and Richard B. Sowers,*Random travelling waves for the KPP equation with noise*, J. Funct. Anal.**128**(1995), no. 2, 439–498. MR**1319963**, 10.1006/jfan.1995.1038**44.**James Nolen, Matthew Rudd, and Jack Xin,*Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds*, Dyn. Partial Differ. Equ.**2**(2005), no. 1, 1–24. MR**2142338**, 10.4310/DPDE.2005.v2.n1.a1**45.**James Nolen and Jack Xin,*Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle*, Discrete Contin. Dyn. Syst.**13**(2005), no. 5, 1217–1234. MR**2166666**, 10.3934/dcds.2005.13.1217**46.**James Nolen and Jack Xin,*A variational principle based study of KPP minimal front speeds in random shears*, Nonlinearity**18**(2005), no. 4, 1655–1675. MR**2150348**, 10.1088/0951-7715/18/4/013**47.**James Nolen and Jack Xin,*A variational principle for KPP front speeds in temporally random shear flows*, Comm. Math. Phys.**269**(2007), no. 2, 493–532. MR**2274555**, 10.1007/s00220-006-0144-8**48.**Jim Nolen and Jack Xin,*Reaction-diffusion front speeds in spatially-temporally periodic shear flows*, Multiscale Model. Simul.**1**(2003), no. 4, 554–570. MR**2029591**, 10.1137/S1540345902420234**49.**P. Poláčik,*On uniqueness of positive entire solutions and other properties of linear parabolic equations*, Discrete Contin. Dyn. Syst.**12**(2005), no. 1, 13–26. MR**2121246**, 10.3934/dcds.2005.12.13**50.**P. Poláčik and Ignác Tereščák,*Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations*, J. Dynam. Differential Equations**5**(1993), no. 2, 279–303. MR**1223450**, 10.1007/BF01053163**51.**Nikola Popović and Tasso J. Kaper,*Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations*, J. Dynam. Differential Equations**18**(2006), no. 1, 103–139. MR**2220193**, 10.1007/s10884-005-9002-1**52.**Lenya Ryzhik and Andrej Zlatoš,*KPP pulsating front speed-up by flows*, Commun. Math. Sci.**5**(2007), no. 3, 575–593. MR**2352332****53.**D. H. Sattinger,*On the stability of waves of nonlinear parabolic systems*, Advances in Math.**22**(1976), no. 3, 312–355. MR**0435602****54.**George R. Sell,*Topological dynamics and ordinary differential equations*, Van Nostrand Reinhold Co., London, 1971. Van Nostrand Reinhold Mathematical Studies, No. 33. MR**0442908****55.**Wenxian Shen,*Travelling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness*, J. Differential Equations**159**(1999), no. 1, 1–54. MR**1726918**, 10.1006/jdeq.1999.3651**56.**Wenxian Shen,*Travelling waves in time almost periodic structures governed by bistable nonlinearities. II. Existence*, J. Differential Equations**159**(1999), no. 1, 55–101. MR**1726919**, 10.1006/jdeq.1999.3652**57.**Wenxian Shen,*Dynamical systems and traveling waves in almost periodic structures*, J. Differential Equations**169**(2001), no. 2, 493–548. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998). MR**1808473**, 10.1006/jdeq.2000.3906**58.**Wenxian Shen,*Traveling waves in diffusive random media*, J. Dynam. Differential Equations**16**(2004), no. 4, 1011–1060. MR**2110054**, 10.1007/s10884-004-7832-x**59.**Wenxian Shen,*Traveling waves in time dependent bistable equations*, Differential Integral Equations**19**(2006), no. 3, 241–278. MR**2215558****60.**Wenxian Shen and Yingfei Yi,*Almost automorphic and almost periodic dynamics in skew-product semiflows*, Mem. Amer. Math. Soc.**136**(1998), no. 647, x+93. MR**1445493**, 10.1090/memo/0647**61.**Wenxian Shen and Yingfei Yi,*Convergence in almost periodic Fisher and Kolmogorov models*, J. Math. Biol.**37**(1998), no. 1, 84–102. MR**1636648**, 10.1007/s002850050121**62.**Horst R. Thieme and Xiao-Qiang Zhao,*Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models*, J. Differential Equations**195**(2003), no. 2, 430–470. MR**2016819**, 10.1016/S0022-0396(03)00175-X**63.**Kōhei Uchiyama,*The behavior of solutions of some nonlinear diffusion equations for large time*, J. Math. Kyoto Univ.**18**(1978), no. 3, 453–508. MR**509494****64.**W. A. Veech,*Almost automorphic functions on groups*, Amer. J. Math.**87**(1965), 719–751. MR**0187014****65.**H. F. Weinberger,*Long-time behavior of a class of biological models*, SIAM J. Math. Anal.**13**(1982), no. 3, 353–396. MR**653463**, 10.1137/0513028**66.**Hans F. Weinberger,*On spreading speeds and traveling waves for growth and migration models in a periodic habitat*, J. Math. Biol.**45**(2002), no. 6, 511–548. MR**1943224**, 10.1007/s00285-002-0169-3**67.**Hans F. Weinberger, Mark A. Lewis, and Bingtuan Li,*Analysis of linear determinacy for spread in cooperative models*, J. Math. Biol.**45**(2002), no. 3, 183–218. MR**1930974**, 10.1007/s002850200145**68.**Jianhong Wu and Xingfu Zou,*Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations*, J. Differential Equations**135**(1997), no. 2, 315–357. MR**1441274**, 10.1006/jdeq.1996.3232**69.**Jianhong Wu and Xingfu Zou,*Traveling wave fronts of reaction-diffusion systems with delay*, J. Dynam. Differential Equations**13**(2001), no. 3, 651–687. MR**1845097**, 10.1023/A:1016690424892**70.**Xue Xin,*Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity*, J. Dynam. Differential Equations**3**(1991), no. 4, 541–573. MR**1129560**, 10.1007/BF01049099**71.**Jack Xin,*Front propagation in heterogeneous media*, SIAM Rev.**42**(2000), no. 2, 161–230. MR**1778352**, 10.1137/S0036144599364296**72.**Jack Xin,*KPP front speeds in random shears and the parabolic Anderson problem*, Methods Appl. Anal.**10**(2003), no. 2, 191–197. MR**2074747****73.**Wenxian Shen and Yingfei Yi,*Almost automorphic and almost periodic dynamics in skew-product semiflows*, Mem. Amer. Math. Soc.**136**(1998), no. 647, x+93. MR**1445493**, 10.1090/memo/0647**74.**B. Zinner, G. Harris, and W. Hudson,*Traveling wavefronts for the discrete Fisher’s equation*, J. Differential Equations**105**(1993), no. 1, 46–62. MR**1237977**, 10.1006/jdeq.1993.1082**75.**Andrej Zlatoš,*Pulsating front speed-up and quenching of reaction by fast advection*, Nonlinearity**20**(2007), no. 12, 2907–2921. MR**2368331**, 10.1088/0951-7715/20/12/009

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
35K55,
35K57,
35B15,
92D25

Retrieve articles in all journals with MSC (2010): 35K55, 35K57, 35B15, 92D25

Additional Information

**Wenxian Shen**

Affiliation:
Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849

Email:
wenxish@auburn.edu

DOI:
https://doi.org/10.1090/S0002-9947-10-04950-0

Keywords:
Almost periodic KPP model,
spreading speed interval,
generalized propagating speed interval,
traveling wave solution,
front solution,
principal Lyapunov exponent,
principal Floquet bundle,
variational principle

Received by editor(s):
May 12, 2008

Published electronically:
May 10, 2010

Additional Notes:
This work was partially supported by NSF grant DMS-0504166

Article copyright:
© Copyright 2010
American Mathematical Society