Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized Moser lemma


Author: Mathieu Stiénon
Journal: Trans. Amer. Math. Soc. 362 (2010), 5107-5123
MSC (2010): Primary 53C15, 17B62, 17B66
DOI: https://doi.org/10.1090/S0002-9947-10-04965-2
Published electronically: May 10, 2010
MathSciNet review: 2657674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show how the classical Moser lemma from symplectic geometry extends to generalized complex structures (GCS) on arbitrary Courant algebroids. For this, we extend the notion of a Lie derivative to sections of the tensor bundle $ (\otimes^i E)\otimes(\otimes^j E^*)$ with respect to sections of the Courant algebroid $ E$ using the Dorfman bracket. We then give a cohomological interpretation of the existence of one-parameter families of GCS on $ E$ and of flows of automorphims of $ E$ identifying all GCS of such a family. In the particular case of symplectic manifolds, we recover the results of Moser. Finally, we give a criterion to detect the local triviality of arbitrary GCS which generalizes the Darboux-Weinstein theorem.


References [Enhancements On Off] (What's this?)

  • 1. Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978, Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman. MR 515141 (81e:58025)
  • 2. Vestislav Apostolov and Marco Gualtieri, Generalized Kähler manifolds, commuting complex structures, and split tangent bundles, Comm. Math. Phys. 271 (2007), no. 2, 561-575. MR 2287917
  • 3. James Barton, Generalized complex structures on Courant algebroids, Ph.D. thesis, 2007.
  • 4. Henrique Bursztyn, Gil R. Cavalcanti, and Marco Gualtieri, Generalized Kähler and hyper-Kähler quotients, Poisson geometry in mathematics and physics, 61-77, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008. MR 2397619 (2010e:53139)
  • 5. -, Reduction of Courant algebroids and generalized complex structures, Adv. Math. 211 (2007), no. 2, 726-765. MR 2323543 (2009d:53124)
  • 6. Ana Cannas da Silva and Alan Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, vol. 10, American Mathematical Society, Providence, RI, 1999. MR 1747916 (2001m:58013)
  • 7. Gil R. Cavalcanti, Formality in generalized Kähler geometry, Topology Appl. 154 (2007), no. 6, 1119-1125. MR 2298627 (2008c:53076)
  • 8. -, New aspects of the ddc-lemma. arXiv:math/0501406
  • 9. Gil R. Cavalcanti and Marco Gualtieri, Generalized complex structures on nilmanifolds, J. Symplectic Geom. 2 (2004), no. 3, 393-410. MR 2131642 (2006b:53098)
  • 10. -, A surgery for generalized complex structures on $ 4$-manifolds, J. Differential Geom. 76 (2007), no. 1, 35-43. MR 2312048
  • 11. Theodore James Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), no. 2, 631-661. MR 998124 (90m:58065)
  • 12. Marius Crainic, Generalized complex structures and Lie brackets. arXiv:math/0412097
  • 13. Marco Gualtieri, Generalized complex geometry, DPhil thesis, 2003, arXiv:math/0401221
  • 14. -, Generalized complex geometry. arXiv:math/0703298
  • 15. -, Generalized geometry and the Hodge decomposition. arXiv:math/0409093
  • 16. Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308. MR 2013140 (2004h:32024)
  • 17. Shengda Hu, Hamiltonian symmetries and reduction in generalized geometry, Houston J. Math. 35 (2009), no. 3, 787-811. MR 2534281
  • 18. -, Reduction and duality in generalized geometry, J. Symplectic Geom. 5 (2007), no. 4, 439-473. MR 2413310 (2009m:53217)
  • 19. Kunihiko Kodaira, Complex manifolds and deformation of complex structures, English ed., Classics in Mathematics, Springer-Verlag, Berlin, 2005, Translated from the 1981 Japanese original by Kazuo Akao. MR 2109686 (2005h:32030)
  • 20. J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112-148. MR 0153030 (27:2999)
  • 21. Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu, Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 088, 46 pp. MR 2439547 (2009i:53082)
  • 22. Zhang-Ju Liu, Alan Weinstein, and Ping Xu, Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), no. 3, 547-574. MR 1472888 (98f:58203)
  • 23. Kirill C. H. Mackenzie and Ping Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), no. 2, 415-452. MR 1262213 (95b:58171)
  • 24. Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. MR 0182927 (32:409)
  • 25. Ryszard Nest and Boris Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math. 5 (2001), no. 4, 599-635. MR 1913813 (2003k:53126)
  • 26. A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404. MR 0088770 (19:577a)
  • 27. Dmitry Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. thesis, 1999. arXiv:math/9910078
  • 28. Pavol Ševera, Unpublished Letter to Alan Weinstein.
  • 29. Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329-346 (1971). MR 0286137 (44:3351)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C15, 17B62, 17B66

Retrieve articles in all journals with MSC (2010): 53C15, 17B62, 17B66


Additional Information

Mathieu Stiénon
Affiliation: Departement Mathematik, E.T.H. Zürich, 8092 Zürich, Switzerland
Address at time of publication: Institut de Mathématiques de Jussieu, Université Paris-Diderot, 75013 Paris, France
Email: stienon@math.ethz.ch, stienon@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-10-04965-2
Keywords: Courant algebroid, Moser lemma, generalized complex structure, Dorfman bracket, symplectic form
Received by editor(s): April 4, 2008
Published electronically: May 10, 2010
Additional Notes: This work was supported by the European Union through the FP6 Marie Curie RTN ENIGMA (Contract number MRTN-CT-2004-5652) and by the E.S.I. Vienna through a Junior Research Fellowship.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society