Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Gaussian Brunn-Minkowski inequalities


Authors: Richard J. Gardner and Artem Zvavitch
Journal: Trans. Amer. Math. Soc. 362 (2010), 5333-5353
MSC (2010): Primary 52A20, 52A40, 60E15, 60G15
DOI: https://doi.org/10.1090/S0002-9947-2010-04891-3
Published electronically: May 20, 2010
MathSciNet review: 2657682
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, together with precise equality conditions, and is shown to be the best possible from several points of view. A new Gaussian Brunn-Minkowski inequality is proposed and proved to be true in some significant special cases. Throughout the study attention is paid to precise equality conditions and conditions on the coefficients of dilatation. Interesting links are found to the S-inequality and the (B) conjecture. An example is given to show that convexity is needed in the (B) conjecture.


References [Enhancements On Off] (What's this?)

  • 1. F. Barthe, The Brunn-Minkowski theorem and related geometric and functional inequalities, in: International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1529-1546. MR 2275657 (2007k:39047)
  • 2. F. Barthe and N. Huet, On Gaussian Brunn-Minkowski inequalities, Studia Math. 191 (2009), 283-304. MR 2481898 (2010f:60052)
  • 3. C. Borell, Convex measures on locally convex spaces, Ark. Math. 12 (1974), 239-252. MR 0388475 (52:9311)
  • 4. C. Borell, Convex set functions in $ d$-space, Period. Math. Hungar. 6 (1975), 111-136. MR 0404559 (53:8359)
  • 5. C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-216. MR 0399402 (53:3246)
  • 6. C. Borell, The Ehrhard inequality, C. R. Math. Acad. Sci. Paris 337 (2003), 663-666. MR 2030108 (2004k:60102)
  • 7. C. Borell, Minkowski sums and Brownian exit times, Ann. Fac. Sci. Toulouse Math. 16 (2007), 37-47. MR 2325590
  • 8. C. Borell, Inequalities of the Brunn-Minkowski type for Gaussian measures, Probab. Theory Relat. Fields 140 (2008), 195-205. MR 2357675
  • 9. H. J. Brascamp and E. Lieb, Some inequalities for Gaussian measures and the long-range order of one-dimensional plasma, in Functional Integration and Its Applications, ed. by A. M. Arthurs, Clarendon Press, Oxford, 1975, pp. 1-14.
  • 10. D. Cordero-Erausquin, M. Fradelizi, and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214 (2004), 410-427. MR 2083308 (2005g:60064)
  • 11. A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301. MR 745081 (85f:60058)
  • 12. A. Ehrhard, Élements extrémaux pours les inégalités de Brunn-Minkowski gaussienes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), 149-168. MR 850753 (88a:60041)
  • 13. R. J. Gardner, Geometric Tomography, second edition, Cambridge University Press, New York, 2006. MR 2251886 (2007i:52010)
  • 14. R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002), 355-405. MR 1898210 (2003f:26035)
  • 15. R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), 435-445. MR 1201126 (94e:52008)
  • 16. R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), 435-447. MR 1298719 (95i:52005)
  • 17. R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytical solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), 691-703. MR 1689343 (2001b:52011)
  • 18. R. J. Gardner, E. B. Vedel Jensen, and A. , Geometric tomography and local stereology, Adv. in Appl. Math. 30 (2003), 397-423. MR 1973951 (2004e:28006)
  • 19. R. J. Gardner and A. Volčič, Tomography of convex and star bodies, Adv. Math. 108 (1994), 367-399. MR 1296519 (95j:52013)
  • 20. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
  • 21. H. Koenig and N. Tomczak-Jaegermann, Geometric inequalities for a class of exponential measures, Proc. Amer. Math. Soc. 133 (2004), 1213-1221. MR 2117224 (2005m:46022)
  • 22. R. Latała, On some inequalities for Gaussian measures, in Proc. Internat. Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 813-822. MR 1957087 (2004b:60055)
  • 23. R. Latała, A note on the Ehrhard inequality, Studia Math. 118 (1996), 169-174. MR 1389763 (97d:60027)
  • 24. R. Latała and K. Oleszkiewicz, Gaussian measures and dilatations of convex symmetric sets, Ann. Probab. 273 (1999), 1922-1938. MR 1742894 (2000k:60062)
  • 25. R. Latała and K. Oleszkiewicz, Small ball probability estimates in terms of widths, Studia Math. 169 (2005), 305-314. MR 2140804 (2006f:60040)
  • 26. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261. MR 963487 (90a:52023)
  • 27. E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538. MR 0380631 (52:1528)
  • 28. B. Maurey, Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, in: Séminaire Bourbaki, Vol. 2003/2004, Astérisque No. 299 (2005), Exp. No. 928, vii, pp. 95-113. MR 2167203 (2006g:52006)
  • 29. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • 30. G. Zhang, Intersection bodies and the Busemann-Petty inequalities in $ {\mathbb{R}}^4$, Ann. of Math. (2) 140 (1994), 331-346. MR 1298716 (95i:52004)
  • 31. G. Zhang, A positive answer to the Busemann-Petty problem in four dimensions, Ann. of Math. (2) 149 (1999), 535-543. MR 1689339 (2001b:52010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A20, 52A40, 60E15, 60G15

Retrieve articles in all journals with MSC (2010): 52A20, 52A40, 60E15, 60G15


Additional Information

Richard J. Gardner
Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
Email: Richard.Gardner@wwu.edu

Artem Zvavitch
Affiliation: Department of Mathematics, Kent State University, Kent, Ohio 44242
Email: zvavitch@math.kent.edu

DOI: https://doi.org/10.1090/S0002-9947-2010-04891-3
Keywords: Convex body, star body, geometric tomography, Gauss measure, Brunn-Minkowski inequality, Ehrhard's inequality, dual Brunn-Minkowski theory, radial sum
Received by editor(s): November 13, 2007
Received by editor(s) in revised form: July 3, 2008
Published electronically: May 20, 2010
Additional Notes: This work was supported in part by U.S. National Science Foundation grants DMS-0603307 and DMS-0504049.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society