Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Numerosities of point sets over the real line

Authors: Mauro Di Nasso and Marco Forti
Journal: Trans. Amer. Math. Soc. 362 (2010), 5355-5371
MSC (2010): Primary 03E65, 03E05; Secondary 03E35, 03A05, 03C20
Published electronically: May 19, 2010
MathSciNet review: 2657683
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the possibility of a notion of size for point sets, i.e. subsets of the Euclidean spaces $ \mathbb{E}_{d}( \mathbb{R})$ of all $ d$-tuples of real numbers, that satisfies the fifth common notion of Euclid's Elements: ``the whole is larger than the part''. Clearly, such a notion of ``numerosity'' can agree with cardinality only for finite sets. We show that ``numerosities'' can be assigned to every point set in such a way that the natural Cantorian definitions of the arithmetical operations provide a very good algebraic structure. Contrasting with cardinal arithmetic, numerosities can be taken as (nonnegative) elements of a discretely ordered ring, where sums and products correspond to disjoint unions and Cartesian products, respectively. Actually, our numerosities form suitable semirings of hyperintegers of nonstandard Analysis. Under mild set-theoretic hypotheses (e.g. $ \textbf{cov}(\mathcal{B})=\mathfrak{c}< \aleph_{\omega}$), we can also have the natural ordering property that, given any two countable point sets, one is equinumerous to a subset of the other. Extending this property to uncountable sets seems to be a difficult problem.

References [Enhancements On Off] (What's this?)

  • 1. V. BENCI, M. DI NASSO - Numerosities of labelled sets: A new way of counting, Adv. Math. 173 (2003), 50-67. MR 1954455 (2004b:03065)
  • 2. V. BENCI, M. DI NASSO, M. FORTI - An Aristotelian notion of size, Ann. Pure Appl. Logic 143 (2006), 43-53. MR 2258620 (2007g:03070)
  • 3. V. BENCI, M. DI NASSO, M. FORTI - An Euclidean measure of size for mathematical universes, Logique et Analyse 50 No.197 (2007). MR 2308603 (2008d:03057)
  • 4. A. BLASS - Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory (M. Foreman, M. Magidor, and A. Kanamori, eds.), to appear.
  • 5. A. BLASS, M. DI NASSO, M. FORTI - Quasi-selective ultrafilters and countable numerosities, in preparation.
  • 6. G. CANTOR - Mitteilungen zur Lehre vom Transfiniten, Zeitschr. Philos. philos. Kritik 91 (1887), 81-125; 92 (1888), 240-265.
  • 7. G. CANTOR - Beiträge zur Begründung der transfiniten Mengenlehre, Math Annalen 46 (1895), 481-512; 49 (1897), 207-246. MR 1510964
  • 8. G. CANTOR - Gesammelte Abhandlungen mathematischen und philosophischen Inhalts (E. Zermelo, ed.), Berlin, 1932 (reprinted 1990).
  • 9. C.C. CHANG, H.J. KEISLER - Model Theory (3rd edition), North-Holland, Amsterdam, 1990. MR 1059055 (91c:03026)
  • 10. J.W. DAUBEN - Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton University Press, (reprint) 1990. MR 1082146 (91h:01044)
  • 11. EUCLID - The Elements, T.L. Heath (translator), 2nd edition (reprint), Dover, New York, 1956. MR 0075873 (17:814b)
  • 12. T. JECH - Set Theory (3rd edition), Springer, Berlin, 2003. MR 1940513 (2004g:03071)
  • 13. P. KOSZMIDER - On coherent families of finite-to-one functions, J. Symb. Logic 58 (1993), 128-138. MR 1217181 (94d:03100)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E65, 03E05, 03E35, 03A05, 03C20

Retrieve articles in all journals with MSC (2010): 03E65, 03E05, 03E35, 03A05, 03C20

Additional Information

Mauro Di Nasso
Affiliation: Dipartimento di Matematica “L. Tonelli”, Università di Pisa, Pisa, Italy

Marco Forti
Affiliation: Dipartimento di Matematica Applicata “U. Dini”, Università di Pisa, Pisa, Italy

Received by editor(s): July 25, 2008
Published electronically: May 19, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society