Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Galois theory for iterative connections and nonreduced Galois groups
HTML articles powered by AMS MathViewer

by Andreas Maurischat PDF
Trans. Amer. Math. Soc. 362 (2010), 5411-5453 Request permission

Abstract:

This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the underlying ring, and we show how this generalises to modules over schemes. We also relate these notions to stratifications on modules, as introduced by A. Grothendieck (cf. Berthelot and Ogus, 1978) in order to extend integrable (ordinary) connections to finite characteristic. Over smooth rings, we obtain an equivalence of stratifications and integrable iterative connections. Furthermore, over a regular ring in positive characteristic, we show that the category of modules with integrable iterative connection is also equivalent to the category of flat bundles as defined by D. Gieseker in 1975.

In the second part of this article, we set up a Picard-Vessiot theory for fields of solutions. For such a Picard-Vessiot extension, we obtain a Galois correspondence, which takes into account even nonreduced closed subgroup schemes of the Galois group scheme on one hand and inseparable intermediate extensions of the Picard-Vessiot extension on the other hand. Finally, we compare our Galois theory with the Galois theory for purely inseparable field extensions given by S. Chase in 1976.

References
  • Katsutoshi Amano and Akira Masuoka, Picard-Vessiot extensions of Artinian simple module algebras, J. Algebra 285 (2005), no. 2, 743–767. MR 2125463, DOI 10.1016/j.jalgebra.2004.12.006
  • Amano, K.: On a discrepancy among Picard-Vessiot theories in positive characteristics. eprint arXiv:math/0612683v2 (2007)
  • Yves André, Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 685–739 (French, with English and French summaries). MR 1862024, DOI 10.1016/S0012-9593(01)01074-6
  • Pierre Berthelot and Arthur Ogus, Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978. MR 0491705
  • Stephen U. Chase, Infinitesimal group scheme actions on finite field extensions, Amer. J. Math. 98 (1976), no. 2, 441–480. MR 424773, DOI 10.2307/2373897
  • P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
  • Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • Deligne, P.. Milne, J.: Tannakian Categories, in Hodge Cycles, Motives and Shimura Varieties. Springer Lecture Notes 900:101-228 (1989)
  • Dyckerhoff, T.: The Inverse Problem of Differential Galois Theory over the Field $\mathbb {R}(t)$. eprint arXiv:0802.2897v1 (2008)
  • Grothendieck, A.: Éléments de géométrie algébrique IV. Publ. Math. de l’I. H. É. S. 20 (1964)
  • David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
  • D. Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 1–31. MR 382271
  • Hardouin, C.: Iterative q-difference Galois Theory. IWR-Preprint (2008) (available at http://www.ub.uni-heidelberg.de/archiv/8278/ )
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • Hasse, H.. Schmidt, F.K.: Noch eine Begründung der Theorie des höheren Differentialquotienten in einem algebraischen Funktionenkörper in einer Unbestimmten. J. Reine Angew. Math. 177:215-237 (1937)
  • Heiderich, F.: Picard-Vessiot-Theorie für lineare partielle Differentialgleichungen. Heidelberg University Library, Diplom thesis (2007)
  • Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871
  • Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
  • Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. MR 291177
  • Nicholas M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13–61. MR 862711, DOI 10.1007/BF01389152
  • Matzat, B.H.: Differential Galois Theory in Positive Characteristic, notes written by J. Hartmann. IWR-Preprint 2001-35 (2001) (available at http://www.iwr.uni-heidelberg.de/$\sim$Heinrich.Matzat/publications.html)
  • Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
  • B. Heinrich Matzat and Marius van der Put, Iterative differential equations and the Abhyankar conjecture, J. Reine Angew. Math. 557 (2003), 1–52. MR 1978401, DOI 10.1515/crll.2003.032
  • Matthew A. Papanikolas, Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math. 171 (2008), no. 1, 123–174. MR 2358057, DOI 10.1007/s00222-007-0073-y
  • Röscheisen, A.: Iterative Connections and Abhyankar’s Conjecture. Heidelberg University Library, Ph.D. thesis (2007) (available at http://www.ub.uni-heidelberg.de/archiv/7179/)
  • João Pedro Pinto dos Santos, Fundamental group schemes for stratified sheaves, J. Algebra 317 (2007), no. 2, 691–713. MR 2362937, DOI 10.1016/j.jalgebra.2007.03.005
  • Mitsuhiro Takeuchi, A Hopf algebraic approach to the Picard-Vessiot theory, J. Algebra 122 (1989), no. 2, 481–509. MR 999088, DOI 10.1016/0021-8693(89)90231-7
  • Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
  • Paul Vojta, Jets via Hasse-Schmidt derivations, Diophantine geometry, CRM Series, vol. 4, Ed. Norm., Pisa, 2007, pp. 335–361. MR 2349665
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13N99, 12H20, 12F15
  • Retrieve articles in all journals with MSC (2000): 13N99, 12H20, 12F15
Additional Information
  • Andreas Maurischat
  • Affiliation: Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
  • Email: andreas.maurischat@iwr.uni-heidelberg.de
  • Received by editor(s): February 22, 2008
  • Received by editor(s) in revised form: October 31, 2008
  • Published electronically: May 25, 2010
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 362 (2010), 5411-5453
  • MSC (2000): Primary 13N99; Secondary 12H20, 12F15
  • DOI: https://doi.org/10.1090/S0002-9947-2010-04966-9
  • MathSciNet review: 2657686