Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On two-dimensional holonomy


Authors: João Faria Martins and Roger Picken
Journal: Trans. Amer. Math. Soc. 362 (2010), 5657-5695
MSC (2010): Primary 53C29; Secondary 18D05
DOI: https://doi.org/10.1090/S0002-9947-2010-04857-3
Published electronically: June 9, 2010
MathSciNet review: 2661492
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define the thin fundamental categorical group $ {\mathcal P}_2(M,*)$ of a based smooth manifold $ (M,*)$ as the categorical group whose objects are rank-1 homotopy classes of based loops on $ M$ and whose morphisms are rank-2 homotopy classes of homotopies between based loops on $ M$. Here two maps are rank-$ n$ homotopic, when the rank of the differential of the homotopy between them equals $ n$. Let $ \mathcal{C}(\mathcal{G})$ be a Lie categorical group coming from a Lie crossed module $ {\mathcal{G}= (\partial\colon E \to G,\triangleright)}$. We construct categorical holonomies, defined to be smooth morphisms $ {\mathcal P}_2(M,*) \to \mathcal{C}(\mathcal{G})$, by using a notion of categorical connections, being a pair $ (\omega,m)$, where $ \omega$ is a connection 1-form on $ P$, a principal $ G$ bundle over $ M$, and $ m$ is a 2-form on $ P$ with values in the Lie algebra of $ E$, with the pair $ (\omega,m)$ satisfying suitable conditions. As a further result, we are able to define Wilson spheres in this context.


References [Enhancements On Off] (What's this?)

  • [B] Baez J.C.: Higher Yang-Mills Theory, arXiv:hep-th/0206130.
  • [BC] Baez J.C.; Crans A.S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ. 12 (2004), 492-538 (electronic). MR 2068522 (2005m:17039)
  • [BL] Baez J.C.; Lauda A.D.: Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12 (2004), 423-491 (electronic). MR 2068521 (2005m:18005)
  • [BS1] Baez J.C.; Schreiber U.: Higher Gauge Theory. Categories in algebra, geometry and mathematical physics, 7-30, Contemp. Math., 431, Amer. Math. Soc., Providence, RI, 2007. MR 2342821
  • [BS2] Baez J.C.; Schreiber U.: Higher Gauge Theory: 2-Connections on 2-Bundles, arXiv:hep-th/0412325
  • [BM] Barrett J.W.; Mackaay M.: Categorical representations of categorical groups. Theory Appl. Categ. 16 (2006), no. 20, 529-557 (electronic). MR 2259262 (2007k:18007)
  • [BT] Bott R.; Tu L.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982. MR 658304 (83i:57016)
  • [BrMe] Breen L.; Messing W.: Differential geometry of gerbes. Adv. Math. 198 (2005), no. 2, 732-846. MR 2183393 (2006h:14021)
  • [Br] Brown K.S.: Cohomology of Groups. Corrected reprint of the 1982 original. Graduate Texts in Mathematics, 87. Springer-Verlag, New York, 1994. MR 1324339 (96a:20072)
  • [BHKP] Brown R.; Hardie K. A.; Kamps K. H.; Porter T.: A homotopy double groupoid of a Hausdorff space. Theory Appl. Categ. 10 (2002), 71-93 (electronic). MR 1883479 (2003d:18010)
  • [BH] Brown R., Higgins P.J.: On the connection between the second relative homotopy groups of some related spaces. Proc. London Math. Soc. (3) 36 (1978), no. 2, 193-212. MR 0478150 (57:17639)
  • [BHS] Brown R., Higgins P.J., Sivera R.: Nonabelian algebraic topology, (in preparation). Part I downloadable.
  • [BMo] Brown R.; Mosa G.H.: Double categories, $ {2}$-categories, thin structures and connections. Theory Appl. Categ. 5 (1999), no. 7, 161-275 (electronic). MR 1694653 (2000f:18007)
  • [CP] Caetano A.; Picken R. F.: An axiomatic definition of holonomy. Internat. J. Math. 5 (1994), no. 6, 815-848. MR 1298997 (95k:53031)
  • [EML] Eilenberg S, MacLane S.: Determination of the second homology and cohomology groups of a space by means of homotopy invariants, Proc. Nat. Acad. Sci. U. S. A. 32, (1946), 277-280. MR 0019307 (8:398b)
  • [HKK] Hardie K. A.; Kamps K. H.; Kieboom R. W.: A homotopy 2-groupoid of a Hausdorff space. Papers in honour of Bernhard Banaschewski (Cape Town, 1996). Appl. Categ. Structures 8 (2000), no. 1-2, 209-214. MR 1785844 (2001h:18008)
  • [H] Hirsch M.W.: Differential Topology. Graduate Texts in Mathematics, no. 33. Springer-Verlag, New York-Heidelberg, 1976 MR 0448362 (56:6669)
  • [K] Knapp A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083 (98b:22002)
  • [KH] Khokhlov Yu. S.: Stable distributions on the Heisenberg group. Stability problems for stochastic models. J. Soviet Math. 47 (1989), no. 5, 2796-2798. MR 1040113 (91e:43001)
  • [KN] Kobayashi S.; Nomizu K.: Foundations of Differential Geometry. Vol. I. Interscience Publishers, a division of John Wiley & Sons, New York-London 1961.
  • [ML] Mac Lane S.: Categories for the Working Mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998. MR 1712872 (2001j:18001)
  • [MP] Mackaay M.; Picken R.F.: Holonomy and parallel transport for abelian gerbes. Adv. Math. 170 (2002), no. 2, 287-219. MR 1932333 (2004a:53052)
  • [M] Mackaay M.: A note on the holonomy of connections in twisted bundles. Cah. Topol. Géom. Différ. Catég. 44 (2003), no. 1, 39-62. MR 1961525 (2004d:53056)
  • [P] Porter T.: Crossed modules in Cat and a Brown-Spencer theorem for $ 2$-categories. Cahiers Topologie Géom. Différentielle Catég. 26 (1985), no. 4, 381-388. MR 816647 (87k:18006)
  • [Po] Postnikov, M.: Leçons de Géometrie. (French) [Lectures in geometry] Géométrie Différentielle. [Differential geometry] Translated from the Russian by Irina Petrova. Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics] Éditions Mir, Moscow, 1990. MR 1145002 (93a:53001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C29, 18D05

Retrieve articles in all journals with MSC (2010): 53C29, 18D05


Additional Information

João Faria Martins
Affiliation: Edifício dos Departamentos de Matemática da FCUP, Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
Address at time of publication: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Email: jmartins@math.ist.utl.pt, jn.martins@fct.unl.pt

Roger Picken
Affiliation: Departamento de Matemática, Instituto Superior Técnico (Universidade Técnica de Lisboa), Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Email: rpicken@math.ist.utl.pt

DOI: https://doi.org/10.1090/S0002-9947-2010-04857-3
Keywords: Non-abelian gerbe, 2-bundle, two-dimensional holonomy, crossed module, categorical group
Received by editor(s): December 4, 2007
Received by editor(s) in revised form: April 30, 2008
Published electronically: June 9, 2010
Additional Notes: The first author was financed by Fundação para a Ciência e Tecnologia (Portugal), post-doctoral grant number SFRH / BPD / 34138 / 2006. This work was supported by the Programa Operacional Ciência e Inovação 2010, financed by the Fundação para a Ciência e a Tecnologia (FCT) and cofinanced by the European Community fund FEDER, in part through the research project Quantum Topology POCI / MAT / 60352 / 2004
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society