Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type

Authors: Boyan Sirakov and Sérgio H. M. Soares
Journal: Trans. Amer. Math. Soc. 362 (2010), 5729-5744
MSC (2010): Primary 35J47, 35J50, 35J10
Published electronically: May 27, 2010
MathSciNet review: 2661494
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.

References [Enhancements On Off] (What's this?)

  • 1. Alves A., Soares S.H.M., Existence and concentration of positive solutions for a class of gradient systems, NoDEA 12(2005) 437-457. MR 2199383 (2006j:35056)
  • 2. Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrodinger equations, Arch. Rat. Mech. Anal. 140(1997) 285-300. MR 1486895 (98k:35172)
  • 3. Benci V., Rabinowitz P.H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979) 241-273. MR 537061 (80i:58019)
  • 4. Buljan H., Schwartz T., Segev M., Soljacic M., Christoudoulides D., Polychromatic partially spatially incoherent solitons in a non-instantaneous Kerr nonlinear medium, J. Opt. Soc. Amer. B. 21(2004) 397-404.
  • 5. Byeon J., Wang Z.Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 165(2002) 295-316. MR 1939214 (2003i:35250)
  • 6. Byeon J., Wang Z.Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, II, Calc. Var. PDE 18(2003) 207-219. MR 2010966 (2004h:35207)
  • 7. Clement Ph., de Figueiredo D., Mitidieri E., Positive solutions of semilinear elliptic systems, Comm. Part. Diff. Eq. 17(1992) 923-940. MR 1177298 (93i:35054)
  • 8. Clement Ph., van der Vorst R.C.A.M., On a semilinear elliptic system, Diff. Int. Eq. 8(1995) 1317-1329. MR 1329843 (96e:35043)
  • 9. Christodoulides D., Eugenieva E., Coskun T., Mitchell M., Segev M., Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media, Phys. Rev. E 63(2001) 035601.
  • 10. Dancer E.N., Yan S., Interior and boundary peak solutions for a mixed boundary value problem, Indiana J. Math., 48(1999) 241-262. MR 1757072 (2001f:35146)
  • 11. Ding Y., Lin F., Semiclassical states of Hamiltonian system of Schrödinger equations with subcritical and critical nonlinearities, J. Part. Diff. Eq. 19(2006) 232-255. MR 2252975 (2007k:35109)
  • 12. Ding Y., Lin F., Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. PDE 30(2007) 231-249. MR 2334939
  • 13. Ding Y., Wei J.C., Semi-classical states for nonlinear Schrödinger equations with sign-changing potentials, J. Funct. Anal. 251 (2)(2007) 546-572. MR 2356423 (2008j:35045)
  • 14. Felmer P., del Pino M., Semiclassical states for nonlinear Schrödinger equations, J. Funct. Anal. 149(1997) 245-265. MR 1471107 (98i:35183)
  • 15. de Figueiredo D. Nonlinear elliptic systems. Anais Acad. Brasil. Cienc. 72(4) (2000), 453-469. MR 1800060 (2002f:35088)
  • 16. de Figuieredo D.G., Yang J. Decay, symmetry and existence of positive solutions of semilinear elliptic systems, Nonl. Anal. 33(1998) 211-234. MR 1617988 (99d:35047)
  • 17. Floer A., Weinstein A., Non-spreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69(1986) 397-408. MR 867665 (88d:35169)
  • 18. Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, 2nd ed. (1983). MR 737190 (86c:35035)
  • 19. Gui C., Existence of multibump solutions for nonlinear Schrödinger equations via variational method, Comm. Part. Diff. Eq. 21(1996) 787-820. MR 1391524 (98a:35122)
  • 20. Jeanjean L., Tanaka K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. PDE 21(2004) 287-318. MR 2094325 (2005j:35062)
  • 21. Hulshof J., Van der Vorst R., Non-spreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69(1986) 397-408.
  • 22. Hulshof J., Mitidieri E., Van der Vorst R., Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114(1993) 32-58. MR 1220982 (94g:35073)
  • 23. Li Y.Y., On a singularly perturbed elliptic equation, Adv. Diff. Eq. 2(1997) 955-980. MR 1606351 (99b:35005)
  • 24. Lieb E.H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118(1983) 349-374. MR 717827 (86i:42010)
  • 25. Lieb E.H., Loss M., Analysis, AMS, Grad. Studies Math. 14(2001). MR 1817225 (2001i:00001)
  • 26. Lin T.C., Wei J., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Diff. Eq. 229(2006) 538-569. MR 2263567 (2007h:58031)
  • 27. Murray J.D., Mathematical Biology, Springer-Verlag, third edition (2002). MR 1007836 (90g:92001)
  • 28. Ni W.M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70(1993) 247-281. MR 1219814 (94h:35072)
  • 29. Oh Y.G., On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potentials, Comm. Math. Phys. 131(1990) 223-253. MR 1065671 (92a:35148)
  • 30. Pomponio A., Coupled nonlinear Schrödinger systems with potentials, J. Diff. Eq. 227(2006) 258-281. MR 2233961 (2007e:35263)
  • 31. Rabier P. J., Stuart C. A., Fredholm and properness properties of quasilinear elliptic operators on $ \mathbb{R}^N$, Math. Nachr. 231(2000) 129-144. MR 1866199 (2003c:35026)
  • 32. Rabinowitz P., On a class of nonlinear Schrödinger equation, Z. Angew. Math. Phys. 43(1992) 270-291. MR 1162728 (93h:35194)
  • 33. Ramos M., Soares S.H.M, On the concentration of solutions of singularly perturbed Hamiltonian systems in $ \mathbb{R}^N$, Port. Math. 63(2006) 157-171. MR 2229874 (2007f:35060)
  • 34. Ramos M., Tavarez H., Solutions with multiple spike patterns for an elliptic system, Calc. Var. PDE 31(2008) 1-25. MR 2342612
  • 35. Serrin J., Zou H., Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. Part. Diff. Eq. 23(1998) 577-599. MR 1620581 (99f:35054)
  • 36. Serrin J., Zou H., Non-existence of positive solutions of Lane-Emden systems, Diff. Int. Eq. 9(1996) 635-653. MR 1401429 (97f:35056)
  • 37. Sirakov B., On the existence of solutions of Hamiltonian elliptic systems in $ \mathbb{R}^N$, Adv. Diff. Eq. 10-12(2000) 1445-1464. MR 1785681 (2001g:35083)
  • 38. Sirakov B., Standing wave solutions of the nonlinear Schrödinger equation in $ \mathbb{R}^N$, Ann. Mat. Pura Appl. 181(2002) 73-83. MR 1895026 (2003a:35180)
  • 39. Chang S.M., Lin C.S., Lin T.C, Lin W.W., Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Physica D: Nonlinear Phenomena 196(2004) 341-361. MR 2090357 (2005g:82074)
  • 40. Stuart C. A., An introduction to elliptic equations on $ R^N$, in Nonlinear functional analysis and applications to differential equations (Trieste, 1997), World Sci. Publishing, River Edge, NJ (1998) 237-285. MR 1703533 (2000f:35025)
  • 41. Wei J., Winter M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. Lond. Math. Soc. 59(1999) 585-606. MR 1709667 (2000h:35012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J47, 35J50, 35J10

Retrieve articles in all journals with MSC (2010): 35J47, 35J50, 35J10

Additional Information

Boyan Sirakov
Affiliation: UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France – and – CAMS, Ecole des Hautes Etudes en Sciences Sociales, 54 bd Raspail, 75270 Paris Cedex 06, France

Sérgio H. M. Soares
Affiliation: Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13560-970, São Carlos-SP, Brazil

Received by editor(s): May 28, 2008
Published electronically: May 27, 2010
Additional Notes: The second author’s research was supported in part by FAPESP
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society