Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Linearization of resonant vector fields


Author: J. Basto-Gonçalves
Journal: Trans. Amer. Math. Soc. 362 (2010), 6457-6476
MSC (2010): Primary 32S65, 34M35
DOI: https://doi.org/10.1090/S0002-9947-2010-04978-5
Published electronically: August 3, 2010
MathSciNet review: 2678982
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method allowing the formal linearization of a large class of vector fields with resonant eigenvalues is presented, the admissible nonlinearities being characterized by conditions that are easy to check. This method also gives information on the terms that are actually present in a nonlinear normal form of a given resonant vector field.


References [Enhancements On Off] (What's this?)

  • 1. D. Anosov, V. Arnold, Dynamical Systems I, Encyclopædia of Mathematical Sciences, Springer-Verlag, 1988. MR 970793 (89g:58060)
  • 2. V. Arnold, Geometrical Methods in the Theory of , Springer-Verlag, 1983. MR 695786 (84d:58023)
  • 3. J. Basto-Gonçalves, I. Cruz, Analytic linearizability of some resonant vector fields, Proc. AMS 129 (2001), 2473-2481. MR 1823934 (2002e:37070)
  • 4. J. Basto-Gonçalves, A.C. Ferreira, Normal forms and linearization of vector fields with multiple eigenvalues, J. Math. Anal. Appl. 301 (2005), 219-236. MR 2105931 (2005h:37104)
  • 5. G. Belitskii, Smooth equivalence of germs of $ {\bf C}^\infty$ vector fields with one zero or a pair of pure imaginary eigenvalues, Funct. Anal. Appl. 20 (1986), 253-259. MR 878039 (88f:58125)
  • 6. A. Brjuno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288. MR 0377192 (51:13365)
  • 7. C. Camacho, N. Kuiper, J. Palis, The topology of holomorphic flows with singularity, Publ. Math. IHES 48 (1978), 5-38. MR 516913 (80j:58045)
  • 8. M. Chaperon, $ C^k$-conjugacy of holomorphic flows near a singularity, Publ. Math. IHES 64 (1986), 693-722.
  • 9. K. T. Chen, Equivalence and decomposition of vector fields about an elementary critical point, Am. J. Math. 85 (1963), 693-722. MR 0160010 (28:3224)
  • 10. J. Guckenheimer, Hartman's theorem for complex flows in the Poincaré domain, Comp. Mathematica 24 (1972), 75-82. MR 0301765 (46:920)
  • 11. F. Ichikawa, Finitely determined singularities of formal vector fields, Inv. Math 66 (1982), 199-214. MR 656620 (83j:58021)
  • 12. G. Sell, Smooth linearization near a fixed point, Am. J. Math. 107 (1985), 1035-1091. MR 805804 (87c:58095)
  • 13. S. Sternberg, On the structure of local homeomorphisms of Euclidean $ n$-space II, Am. J. Math. 80 (1958), 623-631. MR 0096854 (20:3336)
  • 14. J. Yang, Polynomial normal forms of vector fields, Ph.D. thesis, Technion - Israel Institute of Technology, 1997.
  • 15. -, Polynomial normal forms for vector fields on $ \mathbb{R}^3$, Duke Math. J. 106 (2001), 1-18. MR 1810364 (2001m:34165)
  • 16. M. Zhitomirskii, Smooth Local Normal Forms for Vector Fields and Diffeomorphisms, lecture notes, 1992.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32S65, 34M35

Retrieve articles in all journals with MSC (2010): 32S65, 34M35


Additional Information

J. Basto-Gonçalves
Affiliation: Centro de Matemática, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
Email: jbg@fc.up.pt

DOI: https://doi.org/10.1090/S0002-9947-2010-04978-5
Received by editor(s): September 22, 2008
Published electronically: August 3, 2010
Additional Notes: This research had financial support from the Fundação para a Ciência e a Tecnologia and the Calouste Gulbenkian Foundation
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society