Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. II


Authors: Kei Kondo and Minoru Tanaka
Journal: Trans. Amer. Math. Soc. 362 (2010), 6293-6324
MSC (2010): Primary 53C21; Secondary 53C22
DOI: https://doi.org/10.1090/S0002-9947-2010-05031-7
Published electronically: July 13, 2010
MathSciNet review: 2678975
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, as our main theorem, the finiteness of topological type of a complete open Riemannian manifold $ M$ with a base point $ p \in M$ whose radial curvature at $ p$ is bounded from below by that of a non-compact model surface of revolution $ \widetilde{M}$ which admits a finite total curvature and has no pair of cut points in a sector. Here a sector is, by definition, a domain cut off by two meridians emanating from the base point $ \tilde{p} \in \widetilde{M}$. Notice that our model $ \widetilde{M}$ does not always satisfy the diameter growth condition introduced by Abresch and Gromoll. In order to prove the main theorem, we need a new type of the Toponogov comparison theorem. As an application of the main theorem, we present a partial answer to Milnor's open conjecture on the fundamental group of complete open manifolds.


References [Enhancements On Off] (What's this?)

  • [A] U. Abresch, Lower curvature bounds, Toponogov's theorem, and bounded topology, Ann. Sci. École Norm. Sup. $ (4)$ 18 (1985), 651-670. MR 839689 (87j:53058)
  • [AG] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), No. 2, 355-374. MR 1030656 (91a:53071)
  • [Al] A. D. Aleksandrov, Die Innere Geometrie der Konvexen Flächen, Akademie Verlag, Berlin, 1955. MR 0071041 (17:74d)
  • [B] M. Berger, Les variétés riemannienes $ (1/4)$-pincées, Ann. Scuola Norm. Sup. Pisa $ (3)$ 14 (1960), 161-170. MR 0140054 (25:3478)
  • [Bo] O. Bonnet, Sur quelques propriétés des lignes géodésiques, Comptes Rendus Ac. Sc. Paris 40 (1855), 1311-1313.
  • [BGP] Yu. D. Burago, M. Gromov, and G. Ya. Perel'man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), No. 2, 3-51, translation in Russian Math. Surveys 47 (1992), No. 2, 1-58. MR 1185284 (93m:53035)
  • [CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9, North-Holland, Amsterdam, 1975. MR 0458335 (56:16538)
  • [CG] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 415-443. MR 0309010 (46:8121)
  • [CV] S. Cohn -Vossen, Totalkrümmung und geodätische Linien auf einfach zusammen- hängenden offenen volständigen Flächenstücken, Recueil Math. Moscow 43 (1936), 139-163.
  • [D] U. Dini, Fondamenti per la teorica delle funzioni di variabili reali, Pisa, 1878.
  • [GlSi] H. Gluck and D. A. Singer, Scattering of geodesic fields, II, Ann. of Math. $ (2)$ 110 (1979), 205-225. MR 549487 (80k:53073)
  • [GMST] J. Gravesen, S. Markvorsen, R. Sinclair, and M. Tanaka, The cut locus of a torus of revolution, Asian J. Math. 9 (2005), 103-120. MR 2150694 (2006b:53042)
  • [G1] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 630949 (82k:53062)
  • [G2] M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Birkhäuser, Boston, MA, 1999. Based on the 1981 French original (MR 85e:53051), with appendices by M. Gromov, M. Katz, P. Pansu and S. Semmes; translated from the French by Sean Michael Bates. MR 2307192 (2007k:53049)
  • [GP] K. Grove and P. Peterson, Bounding homotopy type by geometry, Ann. of Math. $ (2)$ 128 (1988), 195-206. MR 951512 (90a:53044)
  • [GPW] K. Grove, P. Peterson, and J. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. $ (2)$ 99 (1990), 205-213 ; erratum, 104 (1991), 221-222. MR 1029396 (90k:53075); MR 1094053 (92b:53065)
  • [GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. $ (2)$ 106 (1977), 201-211. MR 0500705 (58:18268)
  • [Hr] P. Hartman, Ordinary Differential Equations (the second edition), Classics in Applied Mathematics 38, Society for Industrial and Applied Mathematics, Philadelphia, 1982. MR 1929104 (2003h:34001)
  • [Hw] T. Hawkins, Lebesgue's Theory of Integration : Its origins and development, University of Wisconsin Press, Madison, 1970. MR 0269473 (42:4368)
  • [He] J. J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom. 40 (1994), 621-642. MR 1305983 (95m:53046)
  • [IT] J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc. 353 (2001), 21-40. MR 1695025 (2001b:53029)
  • [IMS] Y. Itokawa, Y. Machigashira, and K. Shiohama, Generalized Toponogov's theorem for manifolds with radial curvature bounded below, Explorations in complex and Riemannian geometry, 121-130, Contemp. Math. 332, Amer. Math. Soc., Providence, RI, 2003. MR 2018335 (2004j:53051)
  • [KK] N. N. Katz and K. Kondo, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), 2279-2284. MR 1885652 (2002k:53064)
  • [K1] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. $ (2)$ 69 (1959), 654-666. MR 0105709 (21:4445)
  • [K2] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comm. Math. Helv. 35 (1961), 47-54. MR 0139120 (25:2559)
  • [KO] K. Kondo and S. Ohta, Topology of complete manifolds with radial curvature bounded from below, Geom. Funct. Anal. 17 (2007), 1237-1247. MR 2373016 (2008k:53069)
  • [KT1] K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I, Preprint 2006, submitted to Math. Ann. (October 23, 2006), http://arXiv.org/abs/0901.4010
  • [KT2] K. Kondo and M. Tanaka, Toponogov comparison theorem for open triangles, Preprint 2009, http://arXiv.org/abs/0901.4019
  • [Ma] H. von Mangoldt, Über diejenigen Punkte auf positiv gekrümmten Flächen, welche die Eigenschaft haben, dass die von Ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein, J. Reine. Angew. Math. 91 (1881), 23-53.
  • [MNO] Y. Mashiko, K. Nagano, and K. Otsuka, The asymptotic cones of manifolds of roughly non-negative radial curvature, J. Math. Soc. Japan 57 (2005), 55-68. MR 2114720 (2006e:53070)
  • [Mi] J. Milnor, A note on curvature and the fundamental group, J. Differential Geom. 2 (1968), 1-7. MR 0232311 (38:636)
  • [O1] S. Ohta, Markov type of Alexandrov spaces of non-negative curvature, Mathematika 55 (2009), 177-189. MR 2573607
  • [O2] S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), 475-516. MR 2503990
  • [O3] S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), 669-699. MR 2480707 (2009m:53199)
  • [OS] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), 629-658. MR 1274133 (95e:53062)
  • [P1] G. Ya. Perel'man, A. D. Aleksandrov spaces with curvatures bounded below, II, Preprint, 1991.
  • [P2] G. Ya. Perel'man, Elements of Morse theory on Aleksandrov spaces, St. Petersburg Math. J. 5 (1994), 205-213. MR 1220498 (94h:53054)
  • [Po] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237-274. MR 1500710
  • [R] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. $ (2)$ 54 (1951), 38-55. MR 0042765 (13:159b)
  • [Sa] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American Mathematical Society, Providence, RI, 1996. MR 1390760 (97f:53001)
  • [Sc] I. J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry, Ann. of Math. (2) 33 (1932), 485-495. MR 1503071
  • [Sh1] K. Shiohama, The role of total curvature on complete noncompact Riemannian $ 2$-manifolds, Illinois J. Math. 28 (1984), 597-620. MR 761993 (86h:53069)
  • [Sh2] K. Shiohama, Recent developments in sphere theorems, Proc. Symp. Pure Math. 54, 551-576, Amer. Math. Soc., 1993. MR 1216646 (94d:53071)
  • [SST] K. Shiohama, T. Shioya, and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics 159, Cambridge University Press, Cambridge, 2003. MR 2028047 (2005c:53037)
  • [ST1] K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Séminaires & Congrès, Collection Soc. Math. France, No.1, Actes de la table ronde de Géométrie différentielle en l'honneur Marcel Berger, (1996), 531-560. MR 1427770 (98a:53062)
  • [ST2] K. Shiohama and M. Tanaka, Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below, Math. Zeitschrift 241 (2002), 341-351. MR 1935490 (2003i:53048)
  • [SY1] T. Shioya and T. Yamaguchi, Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000), No. 1, 1-66. MR 1863020 (2002k:53074)
  • [SY2] T. Shioya and T. Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 (2005), 131-155. MR 2169831 (2006j:53050)
  • [SiT1] R. Sinclair and M. Tanaka, A bound on the number of endpoints of the cut locus, London Math. Soc., J. Comput. Math. 9 (2006), 21-39. MR 2199583 (2006i:53039)
  • [SiT2] R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J. 59 (2007), 379-399. MR 2365347 (2008k:53075)
  • [So] C. Sormani, Nonnegative Ricci curvature, small linear diameter growth, and finite generation of fundamental groups, J. Differential Geom. 54 (2000), No. 3, 547-559. MR 1823314 (2003a:53047)
  • [St] C. Sturm, Sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. $ (1)$ 1 (1836), 106-186.
  • [T1] M. Tanaka, On the cut loci of a von Mangoldt's surface of revolution, J. Math. Soc. Japan 44 (1992), 631-641. MR 1180440 (93h:53034)
  • [T2] M. Tanaka, On a characterization of a surface of revolution with many poles, Mem. Fac. Sci., Kyushu Univ. Ser. A, Mathematics 46 (1992), 251-268. MR 1195469 (93m:53033)
  • [To1] V. A. Toponogov, Riemann spaces having their curvature bounded below by a positive number (in Russian), Dokl. Akad. Nauk SSSR 120 (1958), 719-721. MR 0099701 (20:6139)
  • [To2] V. A. Toponogov, Riemann spaces with curvature bounded below (in Russian), Uspehi Mat. Nauk 14 (1959), no. 1 $ (85)$, 87-130. MR 0103510 (21:2278)
  • [WZ] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977. MR 0492146 (58:11295)
  • [W] B. Wilking, On fundamental groups of manifolds of nonnegative curvature, Differential Geom. Appl. 13 (2000), no. 2, 129-165. MR 1783960 (2001g:53076)
  • [Y] T. Yamaguchi, A convergence theorem in the geometry of Alexandrov spaces, Séminaires & Congrès, Collection Soc. Math. France, No.1, Actes de la table ronde de Géométrie différentielle en l'honneur Marcel Berger, (1996), 601-642. MR 1427772 (97m:53078)
  • [Z] S.-H. Zhu, A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications, Amer. J. Math. 116 (1994), 669-682. MR 1277451 (95c:53049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C21, 53C22

Retrieve articles in all journals with MSC (2010): 53C21, 53C22


Additional Information

Kei Kondo
Affiliation: Department of Mathematics, Tokai University, Hiratsuka City, Kanagawa Pref. 259–1292 Japan
Email: keikondo@keyaki.cc.u-tokai.ac.jp

Minoru Tanaka
Affiliation: Department of Mathematics, Tokai University, Hiratsuka City, Kanagawa Pref. 259–1292 Japan
Email: m-tanaka@sm.u-tokai.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-2010-05031-7
Keywords: Toponogov’s comparison theorem, cut locus, geodesic, radial curvature, total curvature
Received by editor(s): December 17, 2007
Received by editor(s) in revised form: June 30, 2008
Published electronically: July 13, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society