Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stability of noncharacteristic boundary layers in the standing-shock limit


Author: Kevin Zumbrun
Journal: Trans. Amer. Math. Soc. 362 (2010), 6397-6424
MSC (2010): Primary 35Q35; Secondary 35B35
DOI: https://doi.org/10.1090/S0002-9947-2010-05213-4
Published electronically: July 14, 2010
MathSciNet review: 2678980
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate one- and multi-dimensional stability of noncharacteristic boundary layers in the limit approaching a standing planar shock wave $ \bar U(x_1)$, $ x_1>0$, obtaining necessary conditions of (i) weak stability of the limiting shock, (ii) weak stability of the constant layer $ u\equiv U_-:=\lim_{z\to -\infty} \bar U(z)$, and (iii) nonnegativity of a modified Lopatinski determinant similar to that of the inviscid shock case. For Lax $ 1$-shocks, we obtain equally simple sufficient conditions;

for $ p$-shocks, $ p>1$, the situation appears to be more complicated. Using these results, we determine the stability of certain gas dynamical boundary layers, generalizing earlier work of Serre-Zumbrun and Costanzino-Humphreys-Nguyen-Zumbrun.


References [Enhancements On Off] (What's this?)

  • [AGJ] Alexander, J., Gardner, R. and Jones, C.K.R.T., A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410 (1990), 167-212. MR 1068805 (92d:58028)
  • [Ba] Batchelor, G. K.,
    An introduction to fluid dynamics.
    Cambridge Mathematical Library. Cambridge University Press, Cambridge, paperback edition, 1999. MR 1744638 (2000j:76001)
  • [CHNZ] Costanzino, N., Humpherys, J., Nguyen, T., and Zumbrun, K., Spectral stability of noncharacteristic boundary layers of isentropic Navier-Stokes equations, Arch. Ration. Mech. Anal. 192 (2009), no. 3, 537-587.
  • [Er] Erpenbeck, J. J., Stability of step shocks, Phys. Fluids 5 (1962) no. 10, 1181-1187. MR 0155515 (27:5449)
  • [FS] Freistühler, H. and Szmolyan. P., Spectral stability of small-amplitude viscous shock waves in several dimensions, To appear, Archive for Rat. Mech. Anal.
  • [GG] Grenier, E. and Guès, O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Eqns. 143 (1998), 110-146. MR 1604888 (98j:35026)
  • [GMWZ4] Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Paper 4, Navier-Stokes regularization of multidimensional Euler shocks, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 1, 75-175. MR 2224659 (2006m:35242)
  • [GMWZ5] Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations, to appear, Arch. Rational. Mech. Anal.
  • [GMWZ6] Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Viscous boundary value problems for symmetric systems with variable multiplicities, J. Diff. Eq. 244 (2008), 309-387. MR 2376200 (2009c:35280)
  • [GR] Grenier, E. and Rousset, F., Stability of one dimensional boundary layers by using Green's functions, Comm. Pure Appl. Math. 54 (2001), 1343-1385. MR 1846801 (2003a:35126)
  • [GZ] Gardner, R. and Zumbrun, K., The gap lemma and geometric criteria instability of viscous shock profiles, Comm. Pure Appl. Math. 51, 1998, 797-855. MR 1617251 (99c:35152)
  • [Gi] Gilbarg, D.,
    The existence and limit behavior of the one-dimensional shock layer.
    Amer. J. Math. 73:256-274, 1951. MR 0044315 (13:401e)
  • [HLyZ1] Humpherys, J., Lyng, G., and Zumbrun, K., Spectral stability of ideal-gas shock layers, Arch. Ration. Mech. Anal. 194 (2009), no. 3, 1029-1079. MR 2563632
  • [HLyZ2] Humpherys, J., Lyng, G., and Zumbrun, K., Multidimensional spectral stability of large-amplitude Navier-Stokes shocks, in preparation.
  • [HuZ] Humpherys, J. and Zumbrun, K., Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems. Z. Angew. Math. Phys. 53 (2002) 20-34. MR 1889177 (2003b:35133)
  • [Kat] Kato, T., Reprint of the 1980 edition, Perturbation theory for linear operators. Springer-Verlag, Berlin, Heidelberg, (1995). MR 1335452 (96a:47025)
  • [KK] Kagei, Y. and Kawashima, S., Stability of planar stationary solutions to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 266 (2006), 401-430. MR 2238883 (2007g:35186)
  • [KNZ] Kawashima, S., Nishibata, S. and Zhu, P., Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 240 (2003), no. 3, 483-500. MR 2005853 (2004g:76103)
  • [M] Majda, A., The stability of multi-dimensional shock fronts - a new problem for linear hyperbolic equations. Mem. Amer. Math. Soc. 275 (1983). MR 683422 (84e:35100)
  • [MaZ3] Mascia, C. and Zumbrun, K., Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177-263. MR 2004135 (2004h:35137)
  • [MN] Matsumura, A. and Nishihara, K., Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), no. 3, 449-474. MR 1888084 (2002m:76083)
  • [MZ1] Métivier, G. and Zumbrun, K., Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Memoirs AMS, 826 (2005).
  • [MZ2] Métivier, G. and Zumbrun, K., Hyperbolic Boundary Value Problems for Symmetric Systems with Variable Multiplicities, J. Diff. Equ., 211 (2005) 61-134. MR 2121110 (2005j:35145)
  • [N1] Nguyen, T., Stability of multidimensional viscous shocks for symmetric systems with variable multiplicities, Duke Math. J. 150 (2009), no. 3, 577-614. MR 2582105
  • [N2] Nguyen, T., Long-time stability of viscous MHD boundary layers, preprint (2008).
  • [NZ1] Nguyen, T. and Zumbrun, K., Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic parabolic systems, J. Math. Pures Appl. (9) 92 (2009), no. 6, 547-598. MR 2565843
  • [NZ2] Nguyen, T. and Zumbrun, K., Long-time stability of multi-dimensional noncharacteristic viscous boundary layers, to appear, Comm. Math. Phys.
  • [PZ] Plaza, R. and Zumbrun, K., An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst. 10 (2004) 885-924. MR 2073940 (2005d:35169)
  • [R3] Rousset, F., Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2991-3008. MR 1975409 (2004h:35094)
  • [Se1] Serre, D., La transition vers l'instabilité pour les ondes de chocs multi-dimensionnelles, Trans. Amer. Math. Soc. 353 (2001) 5071-5093. MR 1852095 (2002m:35149)
  • [Se2] Serre, D., Sur la stabilité des couches limites de viscosité, (French. English, French summary) [Stability of viscosity boundary layers] Ann. Inst. Fourier (Grenoble) 51 (2001), no. 1, 109-130. MR 1821071 (2002a:35141)
  • [SZ] Serre, D. and Zumbrun, K., Boundary layer stability in real vanishing-viscosity limit, Comm. Math. Phys. 221 (2001), no. 2, 267-292. MR 1845324 (2003m:35032)
  • [Sm] Smoller, J.,
    Shock waves and reaction-diffusion equations.
    Springer-Verlag, New York, second edition, 1994. MR 1301779 (95g:35002)
  • [YZ] Yarahmadian, S. and Zumbrun, K., Pointwise Green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers, SIAM J. Math. Anal. 40 (2009), 2328-2350. MR 2481297 (2009k:35188)
  • [Z1] Zumbrun, K., Multidimensional stability of planar viscous shock waves, Advances in the theory of shock waves, 304-516. Progress in Nonlinear PDE, 47, Birkhäuser, Boston, 2001. MR 1842778 (2002k:35200)
  • [Z3] Zumbrun, K., Stability of large-amplitude shock waves of compressible Navier-Stokes equations. Handbook of Fluid Mechanics III, S.Friedlander, D.Serre, eds., Elsevier North Holland (2004). MR 2099037 (2006f:35229)
  • [ZH] Zumbrun, K. and Howard, P., Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (1998), 741-871. MR 1665788 (99m:35157)
  • [ZS] Zumbrun, K. and Serre, D. Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48. (1999), 937-992. MR 1736972 (2001h:35122)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q35, 35B35

Retrieve articles in all journals with MSC (2010): 35Q35, 35B35


Additional Information

Kevin Zumbrun
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: kzumbrun@indiana.edu

DOI: https://doi.org/10.1090/S0002-9947-2010-05213-4
Received by editor(s): September 15, 2008
Published electronically: July 14, 2010
Additional Notes: The author’s research was partially supported under NSF grants number DMS-0070765 and DMS-0300487.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society