Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Completely multiplicative functions taking values in $ \{-1,1\}$

Authors: Peter Borwein, Stephen K. K. Choi and Michael Coons
Journal: Trans. Amer. Math. Soc. 362 (2010), 6279-6291
MSC (2000): Primary 11N25, 11N37; Secondary 11A15
Published electronically: July 14, 2010
MathSciNet review: 2678974
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Define the Liouville function for $ A$, a subset of the primes $ P$, by $ \lambda_{A}(n) =(-1)^{\Omega_A(n)}$, where $ \Omega_A(n)$ is the number of prime factors of $ n$ coming from $ A$ counting multiplicity. For the traditional Liouville function, $ A$ is the set of all primes. Denote

$\displaystyle L_A(x):=\sum_{n\leq x}\lambda_A(n)\quad\mbox{and}\quad R_A:=\lim_{n\to\infty}\frac{L_A(n)}{n}.$

It is known that for each $ \alpha\in[0,1]$ there is an $ A\subset P$ such that $ R_A=\alpha$. Given certain restrictions on the sifting density of $ A$, asymptotic estimates for $ \sum_{n\leq x}\lambda_A(n)$ can be given. With further restrictions, more can be said. For an odd prime $ p$, define the character-like function $ \lambda_p$ as $ \lambda_p(pk+i)=(i/p)$ for $ i=1,\ldots,p-1$ and $ k\geq 0$, and $ \lambda_p(p)=1$, where $ (i/p)$ is the Legendre symbol (for example, $ \lambda_3$ is defined by $ \lambda_3(3k+1)=1$, $ \lambda_3(3k+2)=-1$ ($ k\geq 0$) and $ \lambda_3(3)=1$). For the partial sums of character-like functions we give exact values and asymptotics; in particular, we prove the following theorem.


If $ p$ is an odd prime, then

$\displaystyle \max_{n\leq x} \left\vert\sum_{k\leq n}\lambda_p(k)\right\vert \asymp\log x.$

This result is related to a question of Erdős concerning the existence of bounds for number-theoretic functions. Within the course of discussion, the ratio $ \phi(n)/\sigma(n)$ is considered.

References [Enhancements On Off] (What's this?)

  • 1. J.-P. Allouche and J. Shallit,
    Automatic sequences,
    Cambridge University Press, Cambridge, 2003. MR 1997038 (2004k:11028)
  • 2. Paul T. Bateman and Harold G. Diamond, Analytic number theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. An introductory course. MR 2111739 (2005h:11208)
  • 3. P. Borwein, S. Choi, B. Rooney, and A. Weirathmuller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, vol. 27, Springer, New York, 2008. MR 2463715 (2009k:11002)
  • 4. P. Borwein, R. Ferguson, and M.J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), no. 263, 1681-1694. MR 2398787 (2009b:11227)
  • 5. P. Erdős,
    Problems and results on combinatorial number theory.
    In A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pages 117-138. North-Holland, Amsterdam, 1973. MR 0360509 (50:12957)
  • 6. P. Erdős and R. L. Graham,
    Old and new problems and results in combinatorial number theory, volume 28 of Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique].
    Université de Genève L'Enseignement Mathématique, Geneva, 1980. MR 592420 (82j:10001)
  • 7. Andrew Granville and K. Soundararajan, Motivating the multiplicative spectrum, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1-15. MR 1691308 (2000m:11088)
  • 8. Andrew Granville and K. Soundararajan, The spectrum of multiplicative functions, Ann. of Math. (2) 153 (2001), no. 2, 407-470. MR 1829755 (2002g:11127)
  • 9. Andrew Granville and K. Soundararajan, Decay of mean values of multiplicative functions, Canad. J. Math. 55 (2003), no. 6, 1191-1230. MR 2016245 (2005b:11157)
  • 10. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth ed., The Clarendon Press Oxford University Press, New York, 1979. MR 568909 (81i:10002)
  • 11. C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141-145. MR 0104638 (21:3391)
  • 12. A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255-266.
  • 13. Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • 14. Edmund Landau, Neuer Beweis der Gleichung $ \sum\frac{\mu(k)}{k}=0$, Inaugural-Dissertation, Berlin, 1899.
  • 15. Edmund Landau, Über die Äquivalenz zweier Hauptsätze der analytischen Zahlentheorie, Wien. Sitz. 120 (1911), 973-988.
  • 16. Nathan Ng, The distribution factor of values of the summatory function of the Möbius function, Notes of the Canad. Math. Soc. 34 (2002), no. 5, 5-8.
  • 17. Nathan Ng, The distribution of the summatory function of the Möbius function, Proc. London Math. Soc. (3) 89 (2004), no. 2, 361-389. MR 2078705 (2005f:11215)
  • 18. Hans Carl Friedrich von Mangoldt, Beweis der Gleichung $ \sum_{k=0}^\infty\frac{\mu(k)}{k}=0$, Proc. Royal Pruss. Acad. of Sci. of Berlin (1897), 835-852.
  • 19. Aurel Wintner, The Theory of Measure in Arithmetical Semi-Groups, publisher unknown, Baltimore, Md., 1944. MR 0015083 (7:367a)
  • 20. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411-467. MR 0223318 (36:6366)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11N25, 11N37, 11A15

Retrieve articles in all journals with MSC (2000): 11N25, 11N37, 11A15

Additional Information

Peter Borwein
Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Stephen K. K. Choi
Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Michael Coons
Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1

Keywords: Liouville lambda function, multiplicative functions
Received by editor(s): June 13, 2008
Published electronically: July 14, 2010
Additional Notes: This research was supported in part by grants from NSERC of Canada and MITACS
Article copyright: © Copyright 2010 by the authors

American Mathematical Society