Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Scalar curvature estimates by parallel alternating torsion


Author: Sebastian Goette
Journal: Trans. Amer. Math. Soc. 363 (2011), 165-183
MSC (2010): Primary 53C21; Secondary 58J20, 53C15, 53C30
DOI: https://doi.org/10.1090/S0002-9947-2010-04878-0
Published electronically: August 20, 2010
MathSciNet review: 2719677
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize Llarull's scalar curvature comparison to Riemannian manifolds admitting metric connections with parallel and alternating torsion and having a nonnegative curvature operator on  $ \Lambda^2TM$. As a by-product, we show that the Euler number and signature of such manifolds are determined by their global holonomy representation. Our result holds in particular for all quotients of compact Lie groups of equal rank, equipped with a normal homogeneous metric.

We also correct a mistake in the treatment of odd-dimensional spaces in our earlier papers.


References [Enhancements On Off] (What's this?)

  • [AF] I. Agricola, T. Friedrich, On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328 (2004), 711-748. MR 2047649 (2005f:53072)
  • [Am] B. Ammann (joint with M. Dahl, E. Humbert), A surgery formula for the smooth Yamabe invariant, in: J. Brüning, R. Mazzeo, P. Piazza (eds.), Analysis and Geometric Singularities, Oberwolfach Reports 4 (2007), 2413-2417.
  • [ADH] B. Ammann, M. Dahl, E. Humbert, Smooth Yamabe invariant and surgery, preprint (2008); arXiv:0804.1418.
  • [Bä] C. Bär, On Nodal Sets for Dirac and Laplace Operators, Comm. Math. Phys. 188 (1997), 709-721. MR 1473317 (98g:58179)
  • [BW] C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms, International Congress of Mathematicians. Vol. II, 683-690, Eur. Math. Soc., Zürich (2006). MR 2275617 (2008a:53065)
  • [CC] H.D. Cao and B. Chow, Compact Kähler manifolds with nonnegative curvature operator, Invent. Math. 83 (1986), 553-556. MR 827367 (87h:53095)
  • [CE] J. Cheeger, D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam (1975). MR 0458335 (56:16538)
  • [CS] R. Cleyton, A. Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513-528. MR 2114426 (2005i:53054)
  • [GaM] S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures. Appl. 54 (1975), 259-284. MR 0454884 (56:13128)
  • [G1] S. Goette, Äquivariante $ \eta$-Invarianten homogener Räume, Shaker, Aachen (1997).
  • [G2] -, Equivariant $ \eta$-invariants on homogeneous spaces, Math. Z. 232 (1999), 1-42. MR 1714278 (2001d:58022)
  • [G3] -, Vafa-Witten estimates for compact symmetric spaces, Comm. Math. Phys. 271 (2007), 839-851. MR 2291798
  • [GS1] S. Goette and U. Semmelmann, $ \mathrm{Spin}^c$ Structures and Scalar Curvature Estimates, Ann. Global Anal. Geom. 20 (2001), 301-324. MR 1876863 (2003h:53064)
  • [GS2] -, Scalar Curvature Estimates for Compact Symmetric Spaces, Diff. Geom. Appl. 16 (2002), 65-78. MR 1877585 (2003h:53053)
  • [Gr] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in: S. Gindikin, J. Lepowski and R. L. Wilson (eds.), Functional Analysis on the Eve of the 21st Century, Vol. II, Progress in Mathematics Vol. 132 (1996), 1-213. MR 1389019 (98d:53052)
  • [K] V. Kirichenko, $ K$-spaces of maximal rank, Mat. Zametki 22, 465-476 (Russian), translated in Math. Notes 22 (1978), 751-757. MR 0474103 (57:13756)
  • [LM] H. B. Lawson, Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, N. J., 1989. MR 1031992 (91g:53001)
  • [Li] M. Listing, Scalar curvature on compact symmetric spaces, Preprint.
  • [Ll1] M. Llarull, Scalar curvature estimates for $ (n+4k)$-dimensional manifolds, Diff. Geom. Appl. 6 (1996), 321-326. MR 1422338 (97i:53042)
  • [Ll2] M. Llarull, Sharp Estimates and the Dirac Operator, Math. Ann. 310 (1998), 55-71. MR 1600027 (98m:53056)
  • [N] P. A. Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002), 481-504. MR 1946344 (2003m:53043)
  • [P] K. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. (2) 96 (1972), 1-30. MR 0318398 (47:6945)
  • [T] S. Tachibana, A theorem of Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301-302. MR 0365415 (51:1667)
  • [W] N. Weinert, Twistorräume von Quaternionisch-Kähler-Mannigfaltigkeiten und Skalarkrümmung, diploma thesis Uni. Freiburg, 2010.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C21, 58J20, 53C15, 53C30

Retrieve articles in all journals with MSC (2010): 53C21, 58J20, 53C15, 53C30


Additional Information

Sebastian Goette
Affiliation: Mathematisches Institut, Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany
Email: sebastian.goette@math.uni-freiburg.de

DOI: https://doi.org/10.1090/S0002-9947-2010-04878-0
Keywords: Scalar curvature, skew torsion, parallel torsion, homogeneous spaces
Received by editor(s): October 10, 2007
Received by editor(s) in revised form: July 25, 2008
Published electronically: August 20, 2010
Additional Notes: This research was supported in part by DFG special programme “Global Differential Geometry”
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society