Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On Floer homology and the Berge conjecture on knots admitting lens space surgeries

Author: Matthew Hedden
Journal: Trans. Amer. Math. Soc. 363 (2011), 949-968
MSC (2000): Primary 57M25, 57M27
Published electronically: September 22, 2010
MathSciNet review: 2728591
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We complete the first step in a two-part program proposed by Baker, Grigsby, and the author to prove that Berge's construction of knots in the three-sphere which admit lens space surgeries is complete. The first step, which we prove here, is to show that a knot in a lens space with a three-sphere surgery has simple (in the sense of rank) knot Floer homology. The second (conjectured) step involves showing that, for a fixed lens space, the only knots with simple Floer homology belong to a simple finite family. Using results of Baker, we provide evidence for the conjectural part of the program by showing that it holds for a certain family of knots. Coupled with work of Ni, these knots provide the first infinite family of non-trivial knots which are characterized by their knot Floer homology. As another application, we provide a Floer homology proof of a theorem of Berge.

References [Enhancements On Off] (What's this?)

  • 1. K.L. Baker.
    Small genus knots in lens spaces have small bridge number.
    Alg. Geom. Topol. 6:1519-1621, 2006. MR 2253458 (2007f:57008)
  • 2. Kenneth L. Baker.
    Surgery descriptions and volumes of Berge knots. I. Large volume Berge knots.
    J. Knot Theory Ramifications 17(9):1077-1097, 2008. MR 2457837 (2009h:57025)
  • 3. Kenneth L. Baker, J. Elisenda Grigsby, and Matthew Hedden.
    Grid diagrams for lens spaces and combinatorial knot Floer homology.
    Int. Math. Res. Not., Art ID rnm024(10):39 pp., 2008. MR 2429242 (2009h:57012)
  • 4. J. Berge.
    Some knots with surgeries yielding lens spaces.
    unpublished manuscript
  • 5. S.A. Bleiler and R.A. Litherland.
    Lens spaces and Dehn surgery.
    Proc. Amer. Math. Soc. 107:1127-1131, 1989. MR 984783 (90e:57031)
  • 6. D.H. Choi and K.H. Ko.
    Parametrizations of 1-bridge torus knots.
    J. Knot Theory Ramif. 12(4):463-491, 2003. MR 1985906 (2004c:57010)
  • 7. M. Culler, C.McA. Gordon, J. Luecke, and P.B. Shalen.
    Dehn surgery on knots.
    Bull. Amer. Math. Soc. (N.S.) 13:43-45, 1985. MR 788388 (86k:57013)
  • 8. H. Doll.
    A generalized bridge number of links in 3-manifolds.
    Math. Ann. 294:701-717, 1992. MR 1190452 (93i:57023)
  • 9. P. Ghiggini.
    Knot Floer homology detects genus-one fibred knots.
    Amer. J. Math. 130(5):1151-1169, 2008. MR 2450204
  • 10. H. Goda and M. Teragaito.
    Dehn surgeries on knots which yield lens spaces and genera of knots.
    Math. Proc. Cambridge Philos. Soc. 129:501-515, 2000. MR 1780501 (2001g:57011)
  • 11. H. Goda, H. Matsuda, and T. Morifuji.
    Knot Floer Homology of (1,1)-Knots.
    Geom. Dedicata 112(1):197-214, 2005. MR 2163899 (2006e:57014)
  • 12. M. Hedden.
    Knot Floer homology and Whitehead doubling.
    Geom. Topol. 11:2277-2338, 2007. MR 2372849 (2008m:57030)
  • 13. P. Kronheimer, T. Mrowka, P. Ozsváth and Z. Szabó.
    Monopoles and lens space surgeries.
    Ann. of Math. 165(2):457-546, 2007. MR 2299739 (2008b:57037)
  • 14. C. Livingston.
    Computations of the Ozsváth-Szabó concordance invariant.
    Geom. Topol. 8:735-742, 2004. MR 2057779 (2005d:57019)
  • 15. C. Manolescu, P. Ozsváth, and S. Sarkar.
    A combinatorial description of knot Floer homology.
    Ann. of Math. (2) 169(2):633-660, 2009. MR 2480614
  • 16. L. Moser.
    Elementary surgery along torus knots.
    Pacific J. Math. 38:734-745, 1971. MR 0383406 (52:4287)
  • 17. Y. Ni.
    Link Floer homology detects the Thurston norm.
    Geom. Topol. 13(5):2991-3019, 2009. MR 2546619
  • 18. P. Ozsváth and Z. Szabó.
    Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary.
    Adv. Math. 173:179-261, 2003. MR 1957829 (2003m:57066)
  • 19. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and topological invariants for closed three-manifolds.
    Annals of Math. 159(3):1027-1158, 2004. MR 2113019 (2006b:57016)
  • 20. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and three-manifold invariants: Properties and applications.
    Annals of Math. 159(3):1159-1245, 2004. MR 2113020 (2006b:57017)
  • 21. P. S. Ozsváth and Z. Szabó.
    Holomorphic triangles and invariants for smooth four-manifolds.
    Adv. Math. 202:326-400, 2006. MR 2222356 (2007i:57029)
  • 22. P. S. Ozsváth and Z. Szabó.
    Knot Floer Homology and the four-ball genus.
    Geom. Topol. 7:615-639, 2003. MR 2026543 (2004i:57036)
  • 23. P. Ozsváth and Z. Szabó.
    On knot Floer homology and lens space surgeries.
    Topology 44:1281-1300, 2005. MR 2168576 (2006f:57034)
  • 24. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and knot invariants.
    Adv. in Math. 186(1):58-116, 2004. MR 2065507 (2005e:57044)
  • 25. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and genus bounds.
    Geom. Topol. 8:311-334, 2004. MR 2023281 (2004m:57024)
  • 26. P. S. Ozsváth and Z. Szabó.
    Knot Floer homology and integer surgeries.
    Algebr. Geom. Topol. 8(1):101-153, 2008. MR 2377279 (2008m:57075)
  • 27. P. S. Ozsváth and Z. Szabó.
    Knot Floer homology and rational surgeries.
    math.GT/0504404, 2005.
  • 28. J. Rasmussen.
    Floer homology and knot complements.
    Ph.D. thesis, Harvard University, 2003.
  • 29. J. Rasmussen.
    Lens space surgeries and a conjecture of Goda and Teragaito.
    Geom. Topol. 8:1013-1031, 2004. MR 2087076 (2005e:57029)
  • 30. J. Rasmussen.
    Lens space surgeries and $ L$-space homology spheres.
    Preprint, available at

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M25, 57M27

Retrieve articles in all journals with MSC (2000): 57M25, 57M27

Additional Information

Matthew Hedden
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Keywords: Knots, lens spaces, Dehn surgery, Berge knot, Floer homology
Received by editor(s): January 5, 2009
Received by editor(s) in revised form: May 23, 2009
Published electronically: September 22, 2010
Additional Notes: The author was supported in part by NSF Grant #DMS-0706979.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society