The combinatorics of marked Durfee symbols
Author:
Kathy Qing Ji
Journal:
Trans. Amer. Math. Soc. 363 (2011), 9871005
MSC (2010):
Primary 11P81, 05A17, 05A19
Published electronically:
September 21, 2010
MathSciNet review:
2728593
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: George E. Andrews recently introduced marked Durfee symbols which are connected to moments of Dyson's rank. By these connections, Andrews deduced their generating functions and some combinatorial properties and left their purely combinatorial proofs as open problems. The primary goal of this article is to provide combinatorial proofs in answer to Andrews' request. We obtain a partition identity, which gives a relation between marked Durfee symbols and Durfee symbols by constructing bijections, and all identities on marked Durfee symbols given by Andrews could follow from this identity. In a similar manner, we also prove the identities due to Andrews on marked odd Durfee symbols combinatorially, which resemble ordinary marked Durfee symbols with a modified subscript and with odd numbers as entries.
 1.
George
E. Andrews, Problems and prospects for basic hypergeometric
functions, Theory and application of special functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic
Press, New York, 1975, pp. 191–224. Math. Res. Center, Univ.
Wisconsin, Publ. No. 35. MR 0399528
(53 #3372)
 2.
George
E. Andrews, The theory of partitions, AddisonWesley
Publishing Co., Reading, Mass.LondonAmsterdam, 1976. Encyclopedia of
Mathematics and its Applications, Vol. 2. MR 0557013
(58 #27738)
 3.
George
E. Andrews, Plane partitions. III. The weak Macdonald
conjecture, Invent. Math. 53 (1979), no. 3,
193–225. MR
549398 (80j:05009), http://dx.doi.org/10.1007/BF01389763
 4.
George
E. Andrews, Partitions, Durfee symbols, and the AtkinGarvan
moments of ranks, Invent. Math. 169 (2007),
no. 1, 37–73. MR 2308850
(2008d:05013), http://dx.doi.org/10.1007/s0022200700434
 5.
A.
O. L. Atkin and P.
SwinnertonDyer, Some properties of partitions, Proc. London
Math. Soc. (3) 4 (1954), 84–106. MR 0060535
(15,685d)
 6.
A.
O. L. Atkin and F.
G. Garvan, Relations between the ranks and cranks of
partitions, Ramanujan J. 7 (2003), no. 13,
343–366. Rankin memorial issues. MR 2035811
(2005e:11131), http://dx.doi.org/10.1023/A:1026219901284
 7.
Alexander
Berkovich and Frank
G. Garvan, Some observations on Dyson’s new symmetries of
partitions, J. Combin. Theory Ser. A 100 (2002),
no. 1, 61–93. MR 1932070
(2003g:11115), http://dx.doi.org/10.1006/jcta.2002.3281
 8.
C. Boulet and K. Kursungoz, Symmetry of marked Durfee symbols, Int. J. Number Theory, to appear.
 9.
Kathrin
Bringmann, Frank
Garvan, and Karl
Mahlburg, Partition statistics and quasiharmonic Maass forms,
Int. Math. Res. Not. IMRN 1 (2009), Art. ID rnn124,
63–97. MR
2471296 (2009j:11073), http://dx.doi.org/10.1093/imrn/rnn124
 10.
Kathrin
Bringmann, On the explicit construction of higher deformations of
partition statistics, Duke Math. J. 144 (2008),
no. 2, 195–233. MR 2437679
(2009e:11203), http://dx.doi.org/10.1215/001270942008035
 11.
Kathrin
Bringmann, Jeremy
Lovejoy, and Robert
Osburn, Automorphic properties of generating functions for
generalized rank moments and Durfee symbols, Int. Math. Res. Not. IMRN
2 (2010), 238–260. MR 2581041
(2011c:11159), http://dx.doi.org/10.1093/imrn/rnp131
 12.
F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944) 1015.
 13.
Freeman
J. Dyson, A new symmetry of partitions, J. Combinatorial
Theory 7 (1969), 56–61. MR 0238711
(39 #75)
 14.
Ira
M. Gessel and Guoce
Xin, A short proof of the
ZeilbergerBressoud 𝑞Dyson theorem, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2179–2187 (electronic). MR 2213689
(2007e:05012), http://dx.doi.org/10.1090/S0002993906082244
 15.
W. J. Keith, Rank of Partitions and Degree Symbols, The Pennsylvania State University, 2007.
 16.
William
J. Keith, Distribution of the full rank in residue classes for odd
moduli, Discrete Math. 309 (2009), no. 16,
4960–4968. MR 2548896
(2011f:05030), http://dx.doi.org/10.1016/j.disc.2009.02.032
 17.
K. Kursungoz, Parity Considerations in AndrewsGordon Identities and the Marked Durfee Symbols, The Pennsylvania State University, 2009.
 18.
Guoce
Xin, A fast algorithm for MacMahon’s partition analysis,
Electron. J. Combin. 11 (2004), no. 1, Research Paper
58, 20. MR
2097324 (2005h:05015)
 19.
Guoce
Xin, A residue theorem for MalcevNeumann series, Adv. in
Appl. Math. 35 (2005), no. 3, 271–293. MR 2164920
(2006m:16061), http://dx.doi.org/10.1016/j.aam.2005.02.004
 20.
G. N. Watson, The final problem, J. Lond. Math. Soc. 11 (1936) 5580.
 1.
 G. E. Andrews, Problems and prospects for basic hypergeometric functions, In: R. Askey, Theory and Application of Special Functions, Academic Press, New York, 1975, pp.191224. MR 0399528 (53:3372)
 2.
 G. E. Andrews, The Theory of Partitions, AddisonWesley Publishing Co., 1976. MR 0557013 (58:27738)
 3.
 G. E. Andrews, Plane partitions (III): The weak Macdonald conjecture, lnvent. Math. 53 (1979) 193225. MR 549398 (80j:05009)
 4.
 G. E. Andrews, Partitions, Durfee symbols, and the AtkinGarvan moments of ranks, Invent. Math. 169 (2007) 3773. MR 2308850 (2008d:05013)
 5.
 A. O. L. Atkin and P. SwinnertonDyer, Some properties of partitions, Proc. Lond. Math. Soc. III. Ser. 4 (1954) 84106. MR 0060535 (15:685d)
 6.
 A. O. L. Atkin and F. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003) 343366. MR 2035811 (2005e:11131)
 7.
 A. Berkovich and F. G. Garvan, Some observations on Dyson's new symmetries of partitions, J. Combin. Theory Ser. A 100 (2002) 6193. MR 1932070 (2003g:11115)
 8.
 C. Boulet and K. Kursungoz, Symmetry of marked Durfee symbols, Int. J. Number Theory, to appear.
 9.
 K. Bringmann, F. Garvan, and K. Mahlburg, Partition statistics and quasiharmonic Maass forms, Int. Math. Res. Not. (2009) Art. ID rnn124, 6397. MR 2471296 (2009j:11073)
 10.
 K. Bringmann, On the explicit construction of higher deformations of partition statistics, Duke Math. J. 114 (2008) 195233. MR 2437679 (2009e:11203)
 11.
 K. Bringmann, J. Lovejoy, and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, Int. Math. Res. Not. IMRN 2 (2010) 238260. MR 2581041
 12.
 F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944) 1015.
 13.
 F. J. Dyson, A new symmetry of partitions, J. Combin. Theory Ser. A 7 (1969) 5661. MR 0238711 (39:75)
 14.
 I. M. Gessel and G. Xin, A short proof of the ZeilbergerBressoud Dyson theorem, Proc. Amer. Math. Soc. 134 (2006) 21792187. MR 2213689 (2007e:05012)
 15.
 W. J. Keith, Rank of Partitions and Degree Symbols, The Pennsylvania State University, 2007.
 16.
 W. J. Keith, Distribution of the full rank in residue classes for odd moduli, Discrete Math. 309 (2009) 49604968. MR 2548896
 17.
 K. Kursungoz, Parity Considerations in AndrewsGordon Identities and the Marked Durfee Symbols, The Pennsylvania State University, 2009.
 18.
 G. Xin, A fast algorithm for MacMahon's partition analysis, Electron. J. Combin. 11 (2004) R58 20 pp. MR 2097324 (2005h:05015)
 19.
 G. Xin, A residue theorem for MalcevNeumann series, Adv. Appl. Math. 35 (2005) 271293. MR 2164920 (2006m:16061)
 20.
 G. N. Watson, The final problem, J. Lond. Math. Soc. 11 (1936) 5580.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
11P81,
05A17,
05A19
Retrieve articles in all journals
with MSC (2010):
11P81,
05A17,
05A19
Additional Information
Kathy Qing Ji
Affiliation:
Center for Combinatorics, LPMCTJKLC, Nankai University, Tianjin 300071, People’s Republic of China
Email:
ji@nankai.edu.cn
DOI:
http://dx.doi.org/10.1090/S000299472010051360
PII:
S 00029947(2010)051360
Keywords:
Rank,
the moment of rank,
the symmetrized moment of rank,
Durfee symbols,
$k$marked Durfee symbols,
odd Durfee symbols,
$k$marked odd Durfee symbols
Received by editor(s):
June 16, 2008
Received by editor(s) in revised form:
June 8, 2009
Published electronically:
September 21, 2010
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
