Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Local operator algebras, fractional positivity and the quantum moment problem

Author: Anar Dosi
Journal: Trans. Amer. Math. Soc. 363 (2011), 801-856
MSC (2000): Primary 47L60; Secondary 47L25, 46L07, 46G12
Published electronically: September 30, 2010
MathSciNet review: 2728586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we introduce quantum measures as a concept of quantum functional analysis and develop the fractional space technique in the quantum (or local operator) space framework. We prove that each local operator algebra (or quantum $ \ast$-algebra) has a fractional space realization. This approach allows us to formulate and prove a noncommutative Albrecht-Vasilescu extension theorem, which in turn solves the quantum moment problem.

References [Enhancements On Off] (What's this?)

  • 1. Alcantara-Bode J., Yngvason J., Algebraic quantum field theory and noncommutative moment problems I, Ann. Inst. Henri Poincare 48 (2) 147-159 (1988). MR 952659 (90e:46062)
  • 2. Albrecht E., Vasilescu F.-H., Unbounded extensions and operator moment problems Preprint (2004).
  • 3. Bourbaki N., General topology, the main structures, Nauka, Moscow (1968). MR 0244925 (39:6238)
  • 4. Bourbaki N., Spectral Theory, MIR, Moscow (1972). MR 0358350 (50:10816)
  • 5. Doherty A. C., Liang Y.-C., Toner B., Wehner S., The quantum moment problem and bounds on entagled multi-prover games, IEEE, Comp. Compl. 199-210 (2008). MR 2513501 (2010e:81058)
  • 6. Dosiev A. A., Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal. 230 446-493 (2006). MR 2186220 (2006g:47010)
  • 7. Dosiev A. A., A representation theorem for quantum spaces, Funct. Anal. its Appl. 41 (4) 306-310 (2007). MR 2411608
  • 8. Dosiev A. A., Quantized moment problem, C. R. Acad. Sci. Paris 344 (I) 627-630 (2007). MR 2334073 (2008f:46086)
  • 9. Dosiev A. A., Local operator spaces, unbounded operators and multinormed $ C^{\ast}$-algebras, J. Funct. Anal. 255 1724-1760 (2008). MR 2442081
  • 10. Conway J. B., A course in Operator Theory, Amer. Math. Soc. 21 (2000). MR 1721402 (2001d:47001)
  • 11. Effros E. G., Advances in quantized functional analysis, Proc. ICM Berkeley, 1986. MR 934293 (89e:46064)
  • 12. Effros E. G., Ruan Z.-J., Operator spaces, London Math. Soc. Clarendon Press-Oxford (2000). MR 1793753 (2002a:46082)
  • 13. Effros E. G., Webster C., Operator analogues of locally convex spaces, Operator Algebras and Applications (Samos 1996), (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495), Kluwer (1997). MR 1462680 (99b:46081)
  • 14. Helemskii A.Ya., Tensor Products in Quantum Functional Analysis: the Non-Matricial Approach, Topological algebras and applications, 199-223, Contemp. Math., 427, Amer. Math. Soc., Providence, RI (2007). MR 2326357 (2008f:46075)
  • 15. Helemskii A.Ya., Banach and polinormed algebras: General theory, representations, homology, Nauka, Moscow (1989). MR 1031991 (91h:46001)
  • 16. Helemskii A.Ya., Lectures and exercises on functional analysis, 233 Amer. Math. Soc., Providence, RI (2006). MR 2248303 (2007k:46001)
  • 17. Kutateladze S. S., Fundamentals of functional analysis, Kluwer Acad. Publ. 12 (1995). MR 1384068 (97a:46001)
  • 18. Kiukas J., Moment Operators of Observables in Quantum Mechanics, with Applications to Quantization and Homodyne Detection, Turun Y. J. Annl. Univ. T. 380, (2007).
  • 19. Mokni H., Positive functionals on some spaces of fractions, Positivity 11 (2007), 417-432. MR 2336206 (2009c:46055)
  • 20. Rudin W. Functional Analysis, Intern. Ser. Pure and Appl. Math., McGraw-Hill (1991). MR 1157815 (92k:46001)
  • 21. Schmudgen K., Unbounded operator algebras and representation theory, Operator Theory: Advances and Appl. 37, Birkhauser Verlag, Basel/Boston/Berlin (1990). MR 1056697 (91f:47062)
  • 22. Turovskii Yu. V., On spectral properties of some Lie algebras and spectral radius of subsets of a Banach algebra, Sb. Spekt. Teor. Operator i Prilozhen. Baku ELM (1985) 144-181. MR 849356 (87k:46102)
  • 23. Vasilescu F.-H., Operator moment problems in unbounded sets, Operator Theory: Advances and Applications (127) 613-638, Birkhauser Verlag, Basel, 2001. MR 1902905 (2003d:47018)
  • 24. Vasilescu F.-H., Spaces of fractions and positive functionals, Math. Scand. 96 257-279 (2005). MR 2153414 (2007b:47040)
  • 25. Vasilescu F.-H., Unbounded normal algebras and spaces of fractions, Proceedings of the Conference ``Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations and Related Topics'', Beer-Sheva (2005).
  • 26. Webster C., Local operator spaces and applications, Ph.D. University of California, Los Angeles (1997).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47L60, 47L25, 46L07, 46G12

Retrieve articles in all journals with MSC (2000): 47L60, 47L25, 46L07, 46G12

Additional Information

Anar Dosi
Affiliation: Department of Mathematics, Middle East Technical University, Northern Cyprus Campus, Guzelyurt, KKTC via Mersin 10, Turkey

Keywords: Local operator algebra, quantum system, quantum moment problem, fractional space, fractional positivity
Received by editor(s): November 11, 2008
Received by editor(s) in revised form: April 1, 2009
Published electronically: September 30, 2010
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society