Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Convergence of Dirichlet polynomials in Banach spaces

Authors: Andreas Defant and Pablo Sevilla-Peris
Journal: Trans. Amer. Math. Soc. 363 (2011), 681-697
MSC (2000): Primary 46B07; Secondary 32A05, 46B09, 46G20, 30B50
Published electronically: September 15, 2010
MathSciNet review: 2728583
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recent results on Dirichlet series $ \sum_{n} a_{n} \frac{1}{n^{s}}$, $ s \in \mathbb{C}$, with coefficients $ a_n$ in an infinite dimensional Banach space $ X$ show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for $ m$-homogeneous Dirichlet polynomials. But a classical non-trivial fact due to Bohnenblust and Hille shows that if $ X$ is one dimensional, this maximal width heavily depends on the degree $ m$ of the Dirichlet polynomials. We carefully analyze this phenomenon, in particular in the setting of $ \ell_p$-spaces.

References [Enhancements On Off] (What's this?)

  • 1. T. M. Apostol.
    Introduction to analytic number theory.
    Springer-Verlag, New York, 1976.
    Undergraduate Texts in Mathematics. MR 0434929 (55:7892)
  • 2. T. M. Apostol.
    Modular functions and Dirichlet series in number theory, volume 41 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1990. MR 1027834 (90j:11001)
  • 3. H. P. Boas.
    The football player and the infinite series.
    Notices Amer. Math. Soc., 44(11):1430-1435, 1997. MR 1488569 (99a:11101)
  • 4. H. F. Bohnenblust and E. Hille.
    On the absolute convergence of Dirichlet series.
    Ann. of Math. (2), 32(3):600-622, 1931. MR 1503020
  • 5. H. Bohr.
    Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichlet-schen Reihen $ \sum \frac{a_n}{n^2}$.
    Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pages 441-488, 1913.
  • 6. H. Bohr.
    Über die gleichmäßige Konverenz Dirichletscher Reihen.
    J. Reine Angew. Math., 143:203-211, 1913.
  • 7. F. Bombal, D. Pérez-García, and I. Villanueva.
    Multilinear extensions of Grothendieck's theorem.
    Q. J. Math., 55(4):441-450, 2004. MR 2104683 (2005i:47032)
  • 8. A. Defant, J. C. Díaz, D. García, and M. Maestre.
    Unconditional basis and Gordon-Lewis constants for spaces of polynomials.
    J. Funct. Anal., 181(1):119-145, 2001. MR 1818112 (2002b:46030)
  • 9. A. Defant and K. Floret.
    Tensor norms and operator ideals, volume 176 of North-Holland Mathematics Studies.
    North-Holland Publishing Co., Amsterdam, 1993. MR 1209438 (94e:46130)
  • 10. A. Defant, D. García, and M. Maestre.
    Bohr's power series theorem and local Banach space theory.
    J. Reine Angew. Math., 557:173-197, 2003. MR 1978407 (2004d:46012)
  • 11. A. Defant, D. García, M. Maestre, and D. Pérez-García.
    Bohr's strip for vector valued Dirichlet series.
    Math. Ann., 342:533-551, 2008. MR 2430989
  • 12. A. Defant, M. Maestre, and C. Prengel.
    Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables.
    J. Reine Angew. Math., 634:13-49, 2009. MR 2560405
  • 13. A. Defant and P. Sevilla-Peris.
    A new multilinear insight on the classical Littlewood's $ 4/3$ inequality.
    J. Funct. Anal., 256(5):1642-1664, 2009. MR 2490233
  • 14. J. Diestel, H. Jarchow, and A. Tonge.
    Absolutely summing operators, volume 43 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, Cambridge, 1995. MR 1342297 (96i:46001)
  • 15. S. Dineen.
    Complex analysis on infinite-dimensional spaces.
    Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 1999. MR 1705327 (2001a:46043)
  • 16. K. Floret.
    Natural norms on symmetric tensor products of normed spaces.
    Note Mat., 17:153-188 (1999), 1997. MR 1749787 (2001g:46038)
  • 17. H. Hedenmalm.
    Dirichlet series and functional analysis.
    In The legacy of Niels Henrik Abel, pages 673-684. Springer, Berlin, 2004. MR 2077590 (2005h:30002)
  • 18. S. V. Konyagin and H. Queffélec.
    The translation $ \frac12$ in the theory of Dirichlet series.
    Real Anal. Exchange, 27(1):155-175, 2001/02. MR 1887689 (2002k:42012)
  • 19. S. Kwapień.
    Some remarks on $ (p, q)$-absolutely summing operators in $ l\sb{p}$-spaces.
    Studia Math., 29:327-337, 1968. MR 0231212 (37:6767)
  • 20. J. Lindenstrauss and L. Tzafriri.
    Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas].
    Springer-Verlag, Berlin, 1979.
    Function spaces. MR 540367 (81c:46001)
  • 21. B. Maurey and G. Pisier.
    Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach.
    Studia Math., 58(1):45-90, 1976. MR 0443015 (56:1388)
  • 22. H. Queffélec.
    H. Bohr's vision of ordinary Dirichlet series; old and new results.
    J. Anal., 3:43-60, 1995. MR 1340125 (97a:11137)
  • 23. N. Tomczak-Jaegermann.
    Banach-Mazur distances and finite-dimensional operator ideals, volume 38 of Pitman Monographs and Surveys in Pure and Applied Mathematics.
    Longman Scientific & Technical, Harlow, 1989.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46B07, 32A05, 46B09, 46G20, 30B50

Retrieve articles in all journals with MSC (2000): 46B07, 32A05, 46B09, 46G20, 30B50

Additional Information

Andreas Defant
Affiliation: Institute of Mathematics, Carl von Ossietzky University, D–26111 Oldenburg, Germany

Pablo Sevilla-Peris
Affiliation: Institute of Mathematics, Carl von Ossietzky University, D–26111 Oldenburg, Germany – and – Departamento de Matemática Aplicada and IUMPA, ETSMRE, Universidad Politécnica de Valencia, Av. Blasco Ibáñez, 21, E–46010 Valencia, Spain

Keywords: Vector valued Dirichlet series, Dirichlet polynomials, Banach spaces
Received by editor(s): July 14, 2008
Received by editor(s) in revised form: March 7, 2009
Published electronically: September 15, 2010
Additional Notes: Both authors were supported by the MEC Project MTM2008-03211. The second author was partially supported by grants PR2007-0384 (MEC) and UPV-PAID-00-07.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society