Distinguishing BingWhitehead Cantor sets
Authors:
Dennis Garity, Dušan Repovš, David Wright and Matjaž Željko
Journal:
Trans. Amer. Math. Soc. 363 (2011), 10071022
MSC (2000):
Primary 54E45, 54F65; Secondary 57M30, 57N10
Published electronically:
September 17, 2010
MathSciNet review:
2728594
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: BingWhitehead Cantor sets were introduced by DeGryse and Osborne in dimension three and greater to produce examples of Cantor sets that were nonstandard (wild), but still had a simply connected complement. In contrast to an earlier example of Kirkor, the construction techniques could be generalized to dimensions greater than three. These Cantor sets in are constructed by using Bing or Whitehead links as stages in defining sequences. Ancel and Starbird, and separately Wright, characterized the number of Bing links needed in such constructions so as to produce Cantor sets. However it was unknown whether varying the number of Bing and Whitehead links in the construction would produce nonequivalent Cantor sets. Using a generalization of the geometric index, and a careful analysis of three dimensional intersection patterns, we prove that BingWhitehead Cantor sets are equivalently embedded in if and only if their defining sequences differ by some finite number of Whitehead constructions. As a consequence, there are uncountably many nonequivalent such Cantor sets in constructed with genus one tori and with a simply connected complement.
 [Ant20]
M. L. Antoine, Sur la possibilité d'étendre l'homeomorphie de deux figures à leur voisinages, C.R. Acad. Sci. Paris 171 (1920), 661663.
 [AS89]
Fredric
D. Ancel and Michael
P. Starbird, The shrinkability of BingWhitehead
decompositions, Topology 28 (1989), no. 3,
291–304. MR 1014463
(90g:57014), 10.1016/00409383(89)900104
 [BC87]
M.
Bestvina and D.
Cooper, A wild Cantor set as the limit set of
a conformal group action on 𝑆³, Proc. Amer. Math. Soc. 99 (1987), no. 4, 623–626. MR 877028
(88b:57015), 10.1090/S00029939198708770284
 [Bla51]
William
A. Blankinship, Generalization of a construction of Antoine,
Ann. of Math. (2) 53 (1951), 276–297. MR 0040659
(12,730c)
 [Dav86]
Robert
J. Daverman, Decompositions of manifolds, Pure and Applied
Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
(88a:57001)
 [DO74]
D.
G. DeGryse and R.
P. Osborne, A wild Cantor set in 𝐸ⁿ with simply
connected complement, Fund. Math. 86 (1974),
9–27. MR
0375323 (51 #11518)
 [GR07]
Elliott
Pearl (ed.), Open problems in topology. II, Elsevier B. V.,
Amsterdam, 2007. MR 2367385
(2008j:54001)
 [GRŽ05]
Dennis
Garity, Dušan
Repovš, and Matjaž
Željko, Uncountably many inequivalent Lipschitz homogeneous
Cantor sets in ℝ³, Pacific J. Math. 222
(2005), no. 2, 287–299. MR 2225073
(2006m:54056), 10.2140/pjm.2005.222.287
 [GRŽ06]
Dennis
J. Garity, Dušan
Repovš, and Matjaž
Željko, Rigid Cantor sets in 𝑅³
with simply connected complement, Proc. Amer.
Math. Soc. 134 (2006), no. 8, 2447–2456 (electronic). MR 2213719
(2007a:54020), 10.1090/S0002993906084590
 [Kir58]
A.
Kirkor, Wild 0dimensional sets and the fundamental group,
Fund. Math. 45 (1958), 228–236. MR 0102783
(21 #1569)
 [Mye88]
Robert
Myers, Contractible open 3manifolds which are not covering
spaces, Topology 27 (1988), no. 1, 27–35.
MR 935526
(89c:57012), 10.1016/00409383(88)900055
 [Mye99a]
Robert
Myers, Contractible open 3manifolds which nontrivially cover only
noncompact 3manifolds, Topology 38 (1999),
no. 1, 85–94. MR 1644087
(99g:57022), 10.1016/S00409383(98)000044
 [Mye99b]
Robert
Myers, Contractible open 3manifolds with free covering translation
groups, Topology Appl. 96 (1999), no. 2,
97–108. MR
1702304 (2001a:57031), 10.1016/S01668641(98)000479
 [Mye00a]
Robert
Myers, Compactifying sufficiently regular
covering spaces of compact 3manifolds, Proc.
Amer. Math. Soc. 128 (2000), no. 5, 1507–1513. MR 1637416
(2000j:57050), 10.1090/S0002993900051091
 [Mye00b]
Robert
Myers, On covering translations and homeotopy
groups of contractible open 𝑛manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1563–1566. MR 1641077
(2001a:57005), 10.1090/S0002993999051631
 [Mye00c]
Robert
Myers, Uncountably many arcs in 𝑆³ whose complements
have nonisomorphic, indecomposable fundamental groups, J. Knot Theory
Ramifications 9 (2000), no. 4, 505–521. MR 1758869
(2001m:57014), 10.1142/S021821650000027X
 [Rol76]
Dale
Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley,
Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
(58 #24236)
 [RS72]
C.
P. Rourke and B.
J. Sanderson, Introduction to piecewiselinear topology,
SpringerVerlag, New YorkHeidelberg, 1972. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 69. MR 0350744
(50 #3236)
 [Sch53]
Horst
Schubert, Knoten und Vollringe, Acta Math. 90
(1953), 131–286 (German). MR 0072482
(17,291d)
 [She68]
R.
B. Sher, Concerning wild Cantor sets in
𝐸³, Proc. Amer. Math. Soc. 19 (1968),
1195–1200. MR 0234438
(38 #2755), 10.1090/S00029939196802344384
 [Shi74]
A.
C. Shilepsky, A rigid Cantor set in 𝐸³, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
22 (1974), 223–224 (English, with Russian summary).
MR
0345110 (49 #9849)
 [Sko86]
Richard
Skora, Cantor sets in 𝑆³ with simply connected
complements, Topology Appl. 24 (1986), no. 13,
181–188. Special volume in honor of R. H. Bing (1914–1986). MR 872489
(87m:57009), 10.1016/01668641(86)90060X
 [Wri89]
David
G. Wright, BingWhitehead Cantor sets, Fund. Math.
132 (1989), no. 2, 105–116. MR 1002625
(90d:57020)
 [Wri92]
David
G. Wright, Contractible open manifolds which are not covering
spaces, Topology 31 (1992), no. 2,
281–291. MR 1167170
(93f:57004), 10.1016/00409383(92)900219
 [Žel00]
Matjaž Željko, On Embeddings of Cantor Sets into Euclidean spaces, Ph.D. thesis, University of Ljubljana, Ljubljana, Slovenia, 2000.
 [Žel01]
Matjaž
Željko, On defining sequences for Cantor sets, Topology
Appl. 113 (2001), no. 13, 321–325. Geometric
topology: Dubrovnik 1998. MR 1821859
(2002d:57013), 10.1016/S01668641(00)000407
 [Žel05]
Matjaž
Željko, Genus of a Cantor set, Rocky Mountain J. Math.
35 (2005), no. 1, 349–366. MR 2117612
(2006e:57022), 10.1216/rmjm/1181069785
 [Ant20]
 M. L. Antoine, Sur la possibilité d'étendre l'homeomorphie de deux figures à leur voisinages, C.R. Acad. Sci. Paris 171 (1920), 661663.
 [AS89]
 Fredric D. Ancel and Michael P. Starbird, The shrinkability of BingWhitehead decompositions, Topology 28 (1989), no. 3, 291304. MR 1014463 (90g:57014)
 [BC87]
 M. Bestvina and D. Cooper, A wild Cantor set as the limit set of a conformal group action on , Proc. Amer. Math. Soc. 99 (1987), no. 4, 623626. MR 877028 (88b:57015)
 [Bla51]
 William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276297. MR 12:730c
 [Dav86]
 Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press Inc., Orlando, FL, 1986. MR 872468 (88a:57001)
 [DO74]
 D. G. DeGryse and R. P. Osborne, A wild Cantor set in with simply connected complement, Fund. Math. 86 (1974), 927. MR 0375323 (51:11518)
 [GR07]
 Dennis J. Garity and Dušan Repovš, Cantor set problems, Open problems in topology. II. (Elliott Pearl, ed.), Elsevier B. V., Amsterdam, 2007, pp. 676678. MR 2367385 (2008j:54001)
 [GRŽ05]
 D. Garity, D. Repovš, and M. Željko, Uncountably many Inequivalent Lipschitz Homogeneous Cantor sets in , Pacific J. Math. 222 (2005), no. 2, 287299. MR 2225073 (2006m:54056)
 [GRŽ06]
 , Rigid Cantor sets in with Simply Connected Complement, Proc. Amer. Math. Soc. 134 (2006), no. 8, 24472456. MR 2213719 (2007a:54020)
 [Kir58]
 A. Kirkor, Wild 0dimensional sets and the fundamental group, Fund. Math. 45 (1958), 228236. MR 0102783 (21:1569)
 [Mye88]
 Robert Myers, Contractible open manifolds which are not covering spaces, Topology 27 (1988), no. 1, 2735. MR 935526 (89c:57012)
 [Mye99a]
 , Contractible open manifolds which nontrivially cover only noncompact manifolds, Topology 38 (1999), no. 1, 8594. MR 1644087 (99g:57022)
 [Mye99b]
 , Contractible open manifolds with free covering translation groups, Topology Appl. 96 (1999), no. 2, 97108. MR 1702304 (2001a:57031)
 [Mye00a]
 , Compactifying sufficiently regular covering spaces of compact manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 5, 15071513. MR 1637416 (2000j:57050)
 [Mye00b]
 , On covering translations and homeotopy groups of contractible open manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 5, 15631566. MR 1641077 (2001a:57005)
 [Mye00c]
 , Uncountably many arcs in whose complements have nonisomorphic, indecomposable fundamental groups, J. Knot Theory Ramifications 9 (2000), no. 4, 505521. MR 1758869 (2001m:57014)
 [Rol76]
 D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7., Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288 (58:24236)
 [RS72]
 C. P. Rourke and B. J. Sanderson, Introduction to piecewiselinear topology, SpringerVerlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744 (50:3236)
 [Sch53]
 H. Schubert, Knoten und vollringe, Acta. Math. 90 (1953), 131186. MR 0072482 (17,291d)
 [She68]
 R. B. Sher, Concerning wild Cantor sets in , Proc. Amer. Math. Soc. 19 (1968), 11951200. MR 38:2755
 [Shi74]
 A. C. Shilepsky, A rigid Cantor set in , Bull. Acad. Polon. Sci. Sér. Sci. Math. 22 (1974), 223224. MR 0345110 (49:9849)
 [Sko86]
 Richard Skora, Cantor sets in with simply connected complements, Topology Appl. 24 (1986), no. 13, 181188, Special volume in honor of R. H. Bing (19141986). MR 872489 (87m:57009)
 [Wri89]
 David G. Wright, BingWhitehead Cantor sets, Fund. Math. 132 (1989), no. 2, 105116. MR 1002625 (90d:57020)
 [Wri92]
 , Contractible open manifolds which are not covering spaces, Topology 31 (1992), no. 2, 281291. MR 93f:57004
 [Žel00]
 Matjaž Željko, On Embeddings of Cantor Sets into Euclidean spaces, Ph.D. thesis, University of Ljubljana, Ljubljana, Slovenia, 2000.
 [Žel01]
 , On defining sequences for Cantor sets, Topology Appl. 113 (2001), no. 13, 321325, Geometric topology: Dubrovnik 1998. MR 1821859 (2002d:57013)
 [Žel05]
 , Genus of a Cantor set, Rocky Mountain J. Math. 35 (2005), no. 1, 349366. MR 2117612 (2006e:57022)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
54E45,
54F65,
57M30,
57N10
Retrieve articles in all journals
with MSC (2000):
54E45,
54F65,
57M30,
57N10
Additional Information
Dennis Garity
Affiliation:
Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
Email:
garity@math.oregonstate.edu
Dušan Repovš
Affiliation:
Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, P.O. Box 2964, Ljubljana, Slovenia 1001
Email:
dusan.repovs@guest.arnes.si
David Wright
Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email:
wright@math.byu.edu
Matjaž Željko
Affiliation:
Institute of Mathematics, Physics and Mechanics, Faculty of Mathematics and Physics, University of Ljubljana, P.O.Box 2964, Ljubljana, Slovenia
Email:
matjaz.zeljko@fmf.unilj.si
DOI:
http://dx.doi.org/10.1090/S00029947201005175X
Keywords:
Cantor set,
wild Cantor set,
Bing link,
Whitehead link,
defining sequence
Received by editor(s):
October 19, 2008
Received by editor(s) in revised form:
July 1, 2009
Published electronically:
September 17, 2010
Article copyright:
© Copyright 2010
American Mathematical Society
