Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the existence of open and bi-continuing codes


Author: Uijin Jung
Journal: Trans. Amer. Math. Soc. 363 (2011), 1399-1417
MSC (2010): Primary 37B10; Secondary 37B40, 54H20
DOI: https://doi.org/10.1090/S0002-9947-2010-05035-4
Published electronically: October 20, 2010
MathSciNet review: 2737270
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an irreducible sofic shift $ X$, we show that an irreducible shift of finite type $ Y$ of lower entropy is a factor of $ X$ if and only if it is a factor of $ X$ by an open bi-continuing code. If these equivalent conditions hold and $ Y$ is mixing, then any code from a proper subshift of $ X$ to $ Y$ can be extended to an open bi-continuing code on $ X$. These results are still valid when $ X$ is assumed to be only an almost specified shift, i.e., a subshift satisfying an irreducible version of the specification property.


References [Enhancements On Off] (What's this?)

  • 1. J. Ashley, An extension theorem for closing maps of shifts of finite type, Trans. Amer. Math. Soc. 336 (1993), 389-420. MR 1105064 (93e:58048)
  • 2. J. Barth and A. Dykstra, Weak equivalence for shifts of finite type, Indag. Math. (N.S.) 18 (2007), 495-506. MR 2424309
  • 3. A. Bertrand, Specification, synchronisation, average length, Lecture Notes in Comput. Sci. 311 (1988), 86-95. MR 960710 (89i:94022)
  • 4. F. Blanchard and G. Hansel, Systèmes Codés, Theor. Comp. Sci. 44 (1986), 17-49. MR 858689 (88m:68029)
  • 5. M. Boyle, Lower entropy factors of sofic systems, Ergod. Th. & Dynam. Sys. 4 (1984), 541-557. MR 753922 (85m:54014)
  • 6. M. Boyle, Putnam's resolving maps in dimension zero. Ergod.Th. & Dynam.Sys. 25 (2005), 1485-1502. MR 2173429 (2006h:37013)
  • 7. M. Boyle and S. Tuncel, Infinite-to-one codes and Markov measures, Trans. Amer. Math. Soc. 285 (1984), 657-684. MR 752497 (86b:28024)
  • 8. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer-Verlag, 1976. MR 0457675 (56:15879)
  • 9. G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 0259881 (41:4510)
  • 10. U. Jung, Open maps between shift spaces, Ergod. Th. & Dynam. Sys. 29 (2009), 1257-1272. MR 2529648 (2010g:37016)
  • 11. W. Krieger, On the subsystems of topological Markov chains, Ergod. Th. & Dynam. Sys. 2 (1982), 195-202. MR 693975 (85b:28020)
  • 12. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995. MR 1369092 (97a:58050)
  • 13. B. Marcus, Sofic systems and encoding data, IEEE Trans. Inform. Theory 31 (1985), 366-377. MR 794434 (86m:94021)
  • 14. M. Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergod. Th. & Dynam. Sys. 3 (1983), 387-413. MR 741394 (85m:58162)
  • 15. K. Petersen, Chains, entropy, coding. Ergod. Th. & Dynam Sys. 6 (1986), 415-448. MR 0863204 (88i:28040)
  • 16. K. Thomsen, On the structure of a sofic shift space, Trans. Amer. Math. Soc. 356 (2004), 3557-3619. MR 2055747 (2005a:37019)
  • 17. J. Yoo, Personal communications.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37B10, 37B40, 54H20

Retrieve articles in all journals with MSC (2010): 37B10, 37B40, 54H20


Additional Information

Uijin Jung
Affiliation: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-Gu, Seoul 130-722, Korea
Email: uijin@kaist.ac.kr, uijin@kias.re.kr

DOI: https://doi.org/10.1090/S0002-9947-2010-05035-4
Keywords: Open, continuing, sofic shift, shift of finite type, almost specified, specification property
Received by editor(s): November 7, 2008
Received by editor(s) in revised form: February 26, 2009
Published electronically: October 20, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society