Precise finite speed, in the sense of the domain of influence being a subset of the union of influence curves through the support of the initial data, is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a H"olmgren style duality argument. Sharp finite speed is derived from an estimate for propagation in each direction. Propagation in a fixed direction is proved by regularizing the problem in the orthogonal directions. Uniform estimates for the regularized equations are proved using pseudodifferential techniques of Beals-Fefferman type.

1. Introduction

In $\mathbb{R}^{1+d}_{t,x}$, consider the system of partial differential equations,

\begin{equation}
0 = \partial_t u + \sum_{j=1}^{d} A_j(t,x) \partial_j u + B(t,x) u := Lu, \quad \partial_j := \frac{\partial}{\partial x_j}.
\end{equation}

Here

\[u(t,x) = (u_1(t,x), \ldots, u_N(t,x)), \quad (t,x) \in \mathbb{R}^d, \]

is complex N-vector-valued and the coefficients A_j, B are smooth $N \times N$ matrix-valued functions so that for all α,

\[\partial^\alpha_{t,x} A_j, \partial^\alpha_{t,x} B \in L^\infty(\mathbb{R}^{1+d}). \]

Introduce the symbol,

\begin{equation}
a(t,x,\xi) := \sum_{j=1}^{d} A_j(t,x) i\xi_j, \end{equation}

and the characteristic polynomial

\[p(t,x,\tau,\xi) := \det\left(i\tau I + a(t,x,\xi)\right). \]
Definitions. The system is \textbf{weakly hyperbolic} when for all \((t, x, \xi) \in \mathbb{R}^{1+2d}\), the roots \(\tau\) of \(p(t, x, \tau, \xi)\) are real. The system is \textbf{symmetric hyperbolic} when \(ia\) is Hermitian symmetric for all \((t, x, \xi) \in \mathbb{R}^{1+2d}\). The system is \textbf{strictly hyperbolic} when for all real \((t, x, \xi) \in \mathbb{R}^{1+2d}\) with \(\xi \neq 0\), the equation \(p = 0\) has \(N\) distinct real roots \(\tau\). The system has \textbf{constant multiplicity} when \(ia(t, x, \xi)\) is diagonalizable for all real \((t, x, \xi) \in \mathbb{R}^{1+2d}\) with real eigenvalues whose multiplicity is independent of \(t, x\) and \(\xi \neq 0\). The system is \textbf{symmetrizable} when there is a smooth Hermitian \(N \times N\) matrix-valued function \(r(t, x, \xi)\) defined on \(\mathbb{R}^{1+2d} \times \mathbb{R}^d\) homogeneous of degree zero in \(\xi\) for \(|\xi| \geq 1\) so that

i. \(\exists C > 0, \forall t, x, \xi, r \geq CI,\)

ii. \(\forall \alpha, \beta, \langle \xi \rangle^{\beta} |\partial_{t,x}^\alpha \partial_{\xi}^\beta r| \in L^\infty(\mathbb{R}^{1+d} \times \mathbb{R}^d).\)

iii. The matrix \(r(t, x, \xi) a(t, x, \xi)\) is Hermitian antisymmetric for all \(t, x, \xi\) with \(|\xi| \geq 1\).

For weakly hyperbolic systems, the Cauchy problem is well set in suitable Gevrey spaces provided the coefficients have sufficient Gevrey regularity [2], [13]. They are usually not well posed in \(C^\infty\). The other four classes define Cauchy problems so that for arbitrary \(s\) and initial value \(f \in \mathcal{H}^s(\mathbb{R}^d)\) there is a unique solution \(u \in \bigcap_{j \geq 0} \mathcal{C}^j(\mathbb{R}; \mathcal{H}^{s-j}(\mathbb{R}^d))\) with \(u|_{t=0} = f\). All four classes are special cases of the fourth one.

Convention. When not otherwise specified, \((\cdot, \cdot)\) and \(|\cdot|\) denote the scalar product and norm in \(L^2(\mathbb{R}^d)\).

The crux in showing that the Cauchy problem is well set for the last four classes above is to prove that there is a function \(c(t)\) independent of the initial data so that for solutions \(u \in \mathcal{C}(\mathbb{R}; \mathcal{H}^1(\mathbb{R}^d))\) of (1.1), \(|u(t)| \leq c(t) |u(0)|\).

The strategy for proving such estimates is to find a smooth family of strictly positive bounded selfadjoint operators on \(L^2(\mathbb{R}^d)\) so that

\[CI \geq R(t) \geq CI > 0, \quad \text{and} \]

\[\sup_{t, x, \xi \in \mathbb{R}^{1+2d}} \left\| \left(R \left(\sum_{j=1}^d A_j(t, x) \partial_j u \right) + \left(R \left(\sum_{j=1}^d A_j(t, x) \partial_j u \right) \right) \right\|_{L^2(\mathbb{R}^d)} := K < \infty. \]

In such a case one finds that for solutions of (1.1),

\[\partial_t (R(t)u(t), u, u) \leq C_1 (R(t)u, u), \]

so

\[(R(t)u(t), u(t)) \leq e^{C_1 |t|} (R(0)u(0), u(0)). \]

In the symmetric hyperbolic case, one may take \(R = I\). The case where \(r = r(t, x)\) is multiplication by a matrix-valued function was introduced by Friedrichs [5]. When \(r\) is not the identity this class is sometimes called symmetrizable. Our principal interest is the case where \(r\) depends on \(\xi\). Precise finite speed when the symmetrizer is independent of \(\xi\) has several known proofs [12], [16]. In the constant multiplicity case, including the strictly hyperbolic case, order the distinct real eigenvalues of \(ia\),

\[\lambda_1(t, x, \xi) < \lambda_2(t, x, \xi) < \cdots < \lambda_n(t, x, \xi). \]

Since the multiplicities do not change, the eigenvalues do not cross, and such an ordering of the smooth eigenvalues is possible. Define \(\pi_\mu(t, x, \xi)\), smooth and
homogeneous of degree zero, to be the spectral projection along the range of $a(t, x, \xi) - \lambda \mu(t, x, \xi) I$ onto its kernel. Then $R(t)$ can be taken to be the classical pseudodifferential operator with principal symbol and is equal to

$$
\sum_{\mu} \pi_{\mu}(t, x, \xi)^* \pi_{\mu}(t, x, \xi).
$$

This construction is due to Calderón [3] in the strictly hyperbolic case and to Yamaguti [21] in the constant multiplicity case. The symmetric, strictly, and constant multiplicity systems are all symmetrizable. The earliest appearance of the symmetrizable class that we know of is in [13]. In the author’s opinion the definition is the most natural one leading to pseudodifferential estimates without loss of derivatives.

Remarks.
1. Condition ii above implies that r belongs to the classical symbol class $S^0(\mathbb{R}^{1+d} \times \mathbb{R}^d)$.
2. The Kreiss Matrix Theorem [11] shows that constant coefficient initial value problems that generate a C_0 semigroup on $L^2(\mathbb{R}^d)$ are characterized by the existence of such an $r(\xi)$ without the smoothness. That is, Condition ii holds only for $\alpha = \beta = 0$.

Though the initial value problem is solvable, many natural questions are not easily settled for symmetrizable systems. For example, to merit the name hyperbolic one would like to know that there is a finite speed of propagation. The difficulty for systems symmetrized by pseudodifferential operators in x is that the definition is rigidly anchored in the choice of the time variable. For example, if one has such a system and one perturbs the time variable,

$$
\tilde{t} = t + \sum \alpha_j x_j, \quad |\alpha|_{\mathbb{R}^d} < \epsilon, \quad \tilde{x} = x,
$$

it is not clear whether there is a symmetrizer in the new variables. The results of the present paper show that the initial value problem with initial data given at $\tilde{t} = 0$ is well posed.

A finite speed of propagation for systems symmetrized by pseudodifferential operators has only recently been established [17] by constructing solutions as the limit of approximate solutions satisfying finite difference equations. The stability of those schemes is proved by nontrivial pseudodifferential techniques [14], [22], [19], [20]. Variants of the definitions for symmetrizability are proposed in [6], [7] which are stable under perturbations of the timelike variable. They have not assumed the classic status of the energy estimate for symmetrizable systems.

In this paper we settle two open problems concerning symmetrizable hyperbolic initial value problems, *uniqueness in the Cauchy problem at spacelike hypersurfaces*, and, *precise finite speed of propagation*.

Definitions. Suppose that L is weakly hyperbolic. The characteristic variety of L at t, x is the set of $(\tau, \xi) \in \mathbb{R}^{1+d} \setminus 0$ such that $p(t, x, \tau, \xi) = 0$. The forward timelike cone of L at (t, x), denoted $T^+_{t,x}$ is the set of τ, ξ belonging to the connected component of $dt = (1, 0, \ldots, 0)$ in the complement of the characteristic variety at t, x. A smooth embedded hypersurface, M, is spacelike at m when half of its conormal line at m lies in T^+_m.

1 A smooth symbol $c(t, x, \xi)$ belongs to $S^m(\mathbb{R}^{1+d} \times \mathbb{R}^d)$ when for all $\alpha, \beta, \langle \xi \rangle^m \partial_{t,x}^\alpha \partial_{\xi}^\beta c \in L^\infty(\mathbb{R}^{1+d} \times \mathbb{R}^d)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For each \((t,x)\), \(T_{t,x}^+\) is a nonempty open convex cone in \((\tau,\xi)\) space. For this and other properties of hyperbolic polynomials, see \[1, 5, 8, 9, 13\].

Theorem 1.1. If \(L\) is symmetrizable hyperbolic and \(M \subset \mathbb{R}^{1+d}\) is a smooth embedded hypersurface which is spacelike at \(m \in \mathbb{R}^{1+d}\) and if \(u \in \mathcal{D}'(\mathbb{R}^{1+d})\) satisfies \(Lu = 0\) on a neighborhood of \(m\) and vanishes on one side of \(M\) near \(m\), then \(u = 0\) on a neighborhood of \(m\) in \(\mathbb{R}^{1+d}\).

For each of the more restricted classes, symmetric, strictly and constant multiplicity, the systems are also of that type for any time variable \(\tilde{t} = \tilde{t}(t,x)\) so that \(dt\) and \(d\tilde{t}\) belong to the same connected component of the noncharacteristic points. Thus for these more restricted systems, one easily proves Theorem 1.1.

By precise finite speed we mean the bound on the support of solutions of \(Lu = 0\) in Theorem 1.2, which we describe now. For \(\xi \in \mathbb{R}^d \setminus 0\), define
\[
\tau_{\text{max}}(t,x,\xi) := \max \{ \tau \in \mathbb{R} : p(t,x,\tau,\xi) = 0 \}.
\]
As a function of \(\xi\), \(\tau_{\text{max}}(t,x,\xi)\) is positively homogeneous of degree one, continuous, and convex. The set \(T_{t,x}^+\) has the equation
\[
T_{t,x}^+ = \{ (\tau,\xi) : \tau > \tau_{\text{max}}(t,x,\xi) \}.
\]

Definitions. The forward propagation cone for \(L\) at \((t,x)\) is the closed convex dual cone,
\[
\Gamma_{t,x}^+ := \left\{ (T,X) : \forall \tau,\xi \in T_{t,x}^+, \ T\tau + X\xi \geq 0 \right\}.
\]
An influence curve for \(L\) is a Lipschitzian curve \(\gamma(t) = (t,x(t))\) defined for \(t\) in a nontrivial closed interval and so that the tangent vector to \(\gamma\) lies in \(\Gamma_{\gamma(t)}^+\) for Lebesgue almost all \(t\).

Since \(dt = (1,0,\ldots,0) \in T_{t,x}^+\) it follows from the definition that \(T > 0\) in \(\Gamma_{t,x}^+\). Thus, the \(\geq 0\) in (1.3) is hardest to satisfy when \(\tau\) is small. The infimum of the values \(\tau\) is \(-\tau_{\text{max}}(t,x,-\xi)\). Therefore, the propagation cone has the equation
\[
\Gamma_{t,x}^+ = \left\{ (T,X) : T \geq 0 \quad \text{and} \quad \forall \xi, \ -T\tau_{\text{max}}(t,x,-\xi) + X\xi \geq 0 \right\}.
\]
By homogeneity, it suffices to consider \(|\xi| = 1\). Following Leray \[15\] (see also \[12\]), define emissions as follows.

Definition. If \(K \subset \mathbb{R}^{1+d}\) is a closed set, the forward emission of \(K\) denoted \(\mathcal{E}^+(K)\) is the union of forward influence curves \(\gamma : [0,\infty[\rightarrow \mathbb{R}^{1+d}\) with \(\gamma(0) \in K\). The backward emission is denoted \(\mathcal{E}^-\).

The emissions are closed subsets of \(\mathbb{R}^{1+d}\).

Theorem 1.2. If \(L\) is symmetrizable hyperbolic, \(s \in \mathbb{R}\) and \(u \in C(\mathbb{R} : H^s(\mathbb{R}^d))\) satisfies \(Lu = 0\) in the sense of distributions, then \(\supp u \cap \{ t \geq 0 \} \subset \mathcal{E}^+ (\supp u(0))\).

Remark. Duhamel’s representation shows that one has the same conclusion provided that \(Lu \in L^1_{\text{loc}}(\mathbb{R}^d)\) has support in \(\mathcal{E}^+ (\supp u(0))\).

Uniqueness in the Cauchy problem at spacelike hypersurfaces implies precise finite speed (see \[12, 15\]). Thus for symmetric, strictly and constant multiplicity systems, precise finite speed is known. For symmetrizable systems, we reverse the logic, proving Theorem 1.2 and then deriving Theorem 1.1 by a duality argument of Hölmgren type.
Our strategy for proving precise finite speed is to estimate the propagation in a single direction, say \(x_1\), by regularizing the equation in the directions \(x_2, \ldots, x_d\). For the regularized equation, the propagation in \(x_1\) is elementary. The original equation is recovered by removing the regularization. The crux is to prove uniform energy estimates for the regularized problems. This stability step uses pseudodifferential techniques beyond the classical calculus.

A main step is Proposition 2.1 concerning propagation in \(x_1\). The proof of that result occupies the next three sections. Theorem 1.2 is derived from Proposition 2.1 in §5 by a global geometric argument. The geometric arguments in [15], [16] and this one form a sequence reducing the input required to deduce precise finite speed. The present result derives sharp finite speed whenever the conclusion of Proposition 1.2 is available. Theorem 1.1 is derived from Theorem 1.2 in §6.

2. Propagation in \(x_1\)

Proposition 2.1. Suppose that \(L\) is symmetrizable, and, for all \(t,x\), the spectrum of \(A_1(t,x)\) belongs to the interval \([\lambda_{\text{min}}, \lambda_{\text{max}}]\). If \(s \in \mathbb{R}\), and \(u \in C(\mathbb{R}; H^s(\mathbb{R}^d))\) satisfies \(Lu = 0\) and

\[
supp u(0) \subset \{-\infty \leq a \leq x_1 \leq b \leq \infty\},
\]

then for \(t \geq 0\),

\[
supp u \subset \{a + \lambda_{\text{min}} t \leq x_1 \leq b + \lambda_{\text{max}} t\}.
\]

Remarks.

1. For \(t \leq 0\) the support is in \(a + \lambda_{\text{max}} t \leq x_1 \leq b + \lambda_{\text{min}} t\). This follows from the \(t \geq 0\) result upon reversing the time.

2. The derivation, in §5, of Theorem 1.2 from Proposition 2.1 is essentially geometric.

To prove Proposition 2.1, the derivatives with respect to \(x_2, \ldots, x_d\) are regularized, leaving a differential operator in \(t,x_1\) whose propagation in \(x_1\) is easily analyzed. The proposition follows upon passing to the limit. The difficulty is to prove uniform bounds for solutions of the regularized operators. The regularized equations are symmetrized by a nonclassical pseudodifferential operator.

Use the notation

\[
\xi = (\xi_1, \xi'), \quad \xi' := (\xi_2, \ldots, \xi_d), \quad \langle \epsilon \xi' \rangle := \left(1 + \epsilon^2 |\xi'|^2\right)^{1/2}.
\]

Introduce the tangentially regularized symbols,

\[
a_\epsilon(t,x,\xi) := a\left(t,x,\xi_1,\frac{\xi'}{\langle \epsilon \xi' \rangle}\right) = A_1 i\xi_1 + \sum_{j=2}^d A_j \frac{i\xi_j}{\langle \epsilon \xi' \rangle}.
\]

For \(\epsilon = 0\) this is equal to \(a(t,x,\xi)\). It defines a smooth family of symbols for the compact parameter set \(0 \leq \epsilon \leq 1\).

We use the Weyl calculus of pseudodifferential operators as presented in [9] v. III, chap. 18. The metrics and weights depend on the parameter \(\epsilon \in [0,1]\), and we verify that the continuity and temperance hypotheses are satisfied with constants uniform in \(\epsilon\). The uniformity allows us to conclude that when calculus is used to derive estimates, they are uniform in \(\epsilon\).
A superscript w denotes the Weyl quantization. The Weyl operator, $a^w(t,x,D)$, with symbol $a(t,x,\xi)$ is equal to

$$a^w(t,x,D) = \sum_j \left(A_j(x) \partial_j - \frac{1}{2} (\partial_j A)(x) \right).$$

Therefore,

$$Lu = \partial_t u + a^w(t,x,D) u + \tilde{B}(t,x) u,$$

where

$$\tilde{B} := B + \frac{1}{2} \sum_{j=1}^d \partial A_j \partial x_j.$$

Approximate solutions are defined as solutions of the regularized system

$$\partial_t u^\epsilon + a^\epsilon(t,x,D) u^\epsilon + \tilde{B}(t,x) u^\epsilon = 0, \quad u^\epsilon|_{t=0} = u|_{t=0}.$$

The key step is to derive estimates for u^ϵ independent of ϵ. From such estimates one immediately concludes that $u^\epsilon \to u$. The bound on the support of u follows when one proves that the u^ϵ are supported in the set in the right hand side of (2.1). The technical difficulty is that a^ϵ is not a classical symbol of order 1. The derivatives $\partial^\beta a$ do not decay like $\langle \xi \rangle^{-1-|\beta|}$. The symbols behave more and more like this classical behavior as $\epsilon \to 0$. Our strategy is to use the Weyl calculus with weights and metrics depending on $\epsilon \in [0,1]$. The hypotheses of the Weyl calculus are satisfied uniformly in ϵ. The uniformity is verified in the next section. It is applied in §4 to prove uniform bounds.

3. THE PARAMETERS OF THE WEYL CALCULUS

Suppressing the (t,x) dependence,

$$\frac{\partial a}{\partial \xi_1} = \frac{\partial a}{\partial \xi_1}(\xi_1, \xi'/\langle \epsilon \xi' \rangle), \quad \frac{\partial a_x}{\partial \xi'} = \frac{\partial a}{\partial \xi'}(\xi_1, \xi'/\langle \epsilon \xi' \rangle) \partial_{\xi'} \xi'/\langle \epsilon \xi' \rangle.$$

The last factor is uniformly bounded,

$$\sup_{\xi, \epsilon} \left| \frac{\partial}{\partial \xi'} \frac{\xi'}{\langle \epsilon \xi' \rangle} \right| < \infty.$$

As $\partial^\alpha a = O(1/|\xi|^{1-|\alpha|})$ for $|\xi| \geq 1$, one has

$$|\partial a| \leq C.$$

Continuing in this way shows that with constants independent of $\epsilon \in [0,1]$,

$$\sup_{1,2} |\partial^\alpha a_{\epsilon}(x,\xi)| \leq C(\alpha, \beta) \langle \xi_1, \xi'/\langle \epsilon \xi' \rangle \rangle^{1-|\alpha|} < \infty.$$

For the Weyl calculus, introduce the family of metrics g_ϵ and weights m_ϵ,

$$g_{\epsilon}(x,\xi) := dx^2 + \frac{d\xi^2}{\langle \xi_1, \xi'/\langle \epsilon \xi' \rangle \rangle^2}, \quad m_\epsilon := \langle \xi_1, \xi'/\langle \epsilon \xi' \rangle \rangle.$$

The formula for $g_{\epsilon}(x,\xi)$ means that

$$g_{\epsilon}(x,\xi)g_{\epsilon}(y,\eta) = |x|^2 + \frac{|\eta|^2}{\langle \xi_1, \xi'/\langle \epsilon \xi' \rangle \rangle^2}.$$

An orthonormal set of vector fields at (x,ξ) is

$$\frac{\partial}{\partial y_j}, \quad \langle \xi_1, \xi'/\langle \epsilon \xi' \rangle \rangle \frac{\partial}{\partial \eta_j}.$$
Recall [9] Def. 4.9.4.3 that $b(x, \xi) \in S(m_\epsilon, g_\epsilon)$ when
\[
\forall k \in \mathbb{N}, \quad \sup_{x, \xi} \frac{|b|^k_k(x, \xi)}{m_\epsilon(x, \xi)} < \infty,
\]
where $|b|^k_k(x, \xi)$ denotes the norm of the k-multilinear k^{th} derivative of $b(x, \xi)$ with respect to (x, ξ). The important thing is that the the norm of the derivatives at (x, ξ) are taken with respect to the metric $g_\epsilon(x, \xi)$.

Thus, $a_\epsilon \in S(m_\epsilon, g_\epsilon)$, with estimates uniform in t, ϵ. The same is true of $\partial^j_t a_\epsilon$ for each j.

Definition. A family of symbols $b_\epsilon(t) \in S(m_\epsilon, g_\epsilon)$ is said to be bounded if and only if
\[
\forall j \in \mathbb{N}, \quad \sup_{\epsilon \in [0,1]} \frac{|\partial^j_t b_\epsilon(t)|^k_k(x, \xi)}{m_\epsilon(x, \xi)} < \infty.
\]

Examples. i. The family of symbols a_ϵ is bounded in $S(m_\epsilon, g_\epsilon)$. ii. The family of symmetrizer symbols
\[
r_\epsilon \left(t, x, \xi_1, \frac{\xi'}{\xi_1, \epsilon \xi'} \right)
\]

is bounded in $S(1, g_\epsilon)$. (The weight 1 corresponds to L^2 bounded operators.)

For $\epsilon = 0$, the metric and weight reduce to
\[
y_0(x, \xi) = dx^2 + \frac{d\xi^2}{\langle \xi \rangle^2}, \quad m_0(x, \xi) = \langle \xi \rangle,
\]
and the symbol class $S(m_0, g_0)$ is the classical space $S^1(\mathbb{R}^{1+d} \times \mathbb{R}^d)$.

The weight m_ϵ is increasing in ϵ. For ϵ fixed the weights are bounded as $\xi_1 \to \infty$ with ξ_1 bounded. Its maximum value is $O(1/\epsilon)$. As ϵ decreases, the symbols a_ϵ increase, becoming closer and closer to first order in ξ'.

The metric, $dx^2 + d\xi^2/m_\epsilon^2$, is decreasing in ϵ. This encodes the fact that the derivatives of a_ϵ have improving decay properties as ϵ decreases. As ϵ decreases, the derivatives are better controlled. The stability result in the next section is proved by relying on a precise harmony between these two countervailing effects.

The first step is to compute the metric g^σ_ϵ, which is derived from g_ϵ. Recall one of the characterizations. Fix x, ξ. Denote by W' the space of (y, η) and by W its dual with coordinates $(\hat{y}, \hat{\eta})$ and duality
\[
\left< (y, \eta), (\hat{y}, \hat{\eta}) \right> = y \hat{y} + \eta \hat{\eta} = \sum_j \left(y_j \hat{y}_j + \eta_j \hat{\eta}_j \right).
\]

The symplectic form
\[
\sigma((y, \eta), (z, \zeta)) := z \eta - y \zeta
\]
is a real nondegenerate quadratic form on $W' \oplus W'$. It induces the isomorphism
\[
W \ni (\hat{z}, \hat{\zeta}) \mapsto A(\hat{z}, \hat{\zeta}) = (\hat{\xi},-\hat{\xi}) \in W',
\]
so that
\[
\sigma(A(\hat{y}, \hat{\eta}), (x, \xi)) = \left< (y, \eta), (x, \xi) \right> = y \hat{y} + \eta \hat{\eta}.
\]

A metric γ on W is given by transporting g by the map A,
\[
\gamma(\hat{y}, \hat{\eta}) := g_{\epsilon,(x,\xi)}(A(\hat{y}, \hat{\eta})) = g_{\epsilon,(x,\xi)}(\hat{\eta}, -\hat{y}) = |\hat{\eta}|^2 + \frac{|\hat{y}|^2}{\langle \xi_1, \xi'/(\epsilon \xi') \rangle^2}.
\]
By duality, this induces a form on W' [9 eqn. 4.9.4.1],

$$g_{ε,(x,ξ)}^*(y, η) := \max_{γ(y, η) = 1} \left\langle y, η; \langle y, η \rangle \right\rangle.$$

Equivalently,

$$g_{ε,(x,ξ)}^*(y, η) := \max \left\{ (y + η, η)^2 : |η|^2 + \frac{|y|^2}{\langle ξ_1, ξ'/⟨εξ''⟩ \rangle^2} = 1 \right\}.$$

This minimization problem yields

$$\tag{3.1} g_{ε,(x,ξ)}^*(y, η) = \langle ξ_1, ξ'/⟨εξ''⟩ \rangle^2 |y|^2 + |η|^2 = \langle ξ_1, ξ'/⟨εξ''⟩ \rangle^2 g_{ε,(x,ξ)}(y, η).$$

From (3.1) one finds the formula for the regularizing weight $h_ε$.

$$\tag{3.2} h_ε(x, ξ) := \left(\sup_{(y, η) \neq 0} \frac{g_{ε,(x,ξ)}(y, η)}{g_{ε,(x,ξ)}^*(y, η)} \right)^{1/2} = \langle ξ_1, ξ'/⟨εξ''⟩ \rangle^{-1} = \frac{1}{m_ε(x, ξ)}.$$

With these formulas in hand, we verify the hypotheses of the Weyl calculus.

Lemma 3.1. i. The metrics $g_ε$ are uniformly of slow variation [9 Definition 4.9.4.1],

$$\exists N > 0, c > 0, \ \forall ε < 1, \ g_{ε,(x,ξ)}(y, η) \leq \frac{1}{N^2} \Rightarrow g_{ε,(x+y,ξ+η)}(z, ζ) \leq C g_{ε,(x,ξ)}(z, ζ).$$

ii. The weight $m_ε$ is $g_ε$ continuous uniformly in $ε$ [9 Definition 4.9.4.3],

$$\exists 0 < c < C, \ \forall ε < 1, \ g_{ε,(x,ξ)}(y, η) \leq c \Rightarrow m_ε(x, ξ)/C \leq m_ε(x + y, ξ + η) \leq Cm_ε(x, ξ).$$

Therefore, $m_ε^{1/2}$ is also uniformly $g_ε$ continuous.

iii. The metric $g_ε$ is $σ$-temperate, uniformly in $ε$. In fact,

$$\tag{3.4} g_{ε,(y,η)}(z, ζ) \leq g_{ε,(x,ξ)}(z, ζ) \left(1 + g_{ε,(y,η)}^*(x - y, ξ - η) \right)$$

verifying [9 4.9.5.11] with $C = N = 1$.

iv. The weight $m_ε$ is $σ, g_ε$ temperate, uniformly in $ε$. In fact,

$$m_{ε,(y,η)} \leq m_{ε,(x,ξ)} \left(1 + g_{ε,(y,η)}^*(x - y, ξ - η) \right)$$

verifying [9 4.9.5.12] with $C = N = 1$. Therefore $m_ε^{1/2}$ is uniformly $σ, g_ε$ temperate.

Proof. i. First note that

$$\tag{3.5} g_{ε,(x,ξ)}(y, η) \leq \frac{1}{N^2} \Rightarrow \frac{|η|^2}{1 + ξ_1^4 + ⟨εξ''⟩^2} \leq \frac{1}{N^2} \Rightarrow |η| \leq \frac{1}{N} |ξ_1, ξ'/⟨εξ''⟩|.$$

Slow variation is implied by the existence of an $N, c > 0$ so that for all such $t, x, ξ, η$,

$$\tag{3.6} |ξ_1 + η, (ξ'/η)⟩ \geq c |ξ_1, ξ'/⟨εξ''⟩|. $$

Take $N = 100$. Split the proof of (3.6) into two cases depending on whether $|ξ_1| \leq |ξ|/10$ or not.
When $\xi_1 > |\xi|/10$, use (3.5) to show that

(3.7) \[\eta_1 < \frac{|\xi|}{N} < \frac{10|\xi_1|}{N} = \frac{|\xi_1|}{10}. \]

Then

\[|\xi_1 + \eta_1| \geq \frac{9|\xi_1|}{10} \geq \frac{9}{100} \left| \xi_1, \frac{\xi'}{\langle \xi \xi' \rangle} \right|, \]

implying (3.6).

On the other hand, when $|\xi_1| \leq |\xi|/10$, one has

\[|\xi'| \geq \frac{9}{10} |\xi| \geq 9 \frac{100}{1000} |\xi_1|. \]

Use (3.5) to find

\[|\eta'| \leq \frac{1}{N} \left(\left(\frac{|\xi'|}{9} \right)^2 + \left(\frac{|\xi|}{\langle \xi \xi' \rangle} \right)^2 \right)^{1/2} \leq \frac{2|\xi'|}{N} = \frac{|\xi'|}{500}, \]

Then,

\[\frac{501}{500} |\xi'| \geq |\xi' + \eta'| \geq \frac{499}{500} |\xi'| \]

and (3.6) follows.

ii. It suffices to treat m_c. For that, it suffices to verify the second inequality in (3.3), since one can then write $(x, \xi) = (x + y, \xi + \eta) + (-y, -\eta)$ to derive the first.

The proof of slow variation showed that there is a $c > 0$ so that $g_{c,(x,\xi)} \leq 1/(100)^2$ implies (3.6). This implies the desired second inequality in (3.3).

iii. Compute

\[g_{c,(x,\xi)}(z, \zeta) = |z|^2 + \frac{|\zeta|^2}{\langle \xi_1, \xi'/\langle \xi \xi' \rangle \rangle^2} \]

and

\[g_{c,(y,\eta)}(z, \zeta) = |z|^2 + \frac{|\zeta|^2}{\langle \eta_1, \eta'/\langle \eta \eta' \rangle \rangle^2} = |z|^2 + \frac{|\zeta|^2}{\langle \xi_1, \xi'/\langle \xi \xi' \rangle \rangle^2} \frac{\langle \xi_1, \xi'/\langle \xi \xi' \rangle \rangle^2}{\langle \eta_1, \eta'/\langle \eta \eta' \rangle \rangle^2}. \]

Peetre’s inequality is the first of the sequence

(3.8) \[\frac{\langle \xi_1, \xi'/\langle \xi \xi' \rangle \rangle^2}{\langle \eta_1, \eta'/\langle \eta \eta' \rangle \rangle^2} \leq 1 + \left(\frac{\xi_1 - \eta_1, \xi'}{\langle \xi \xi' \rangle} - \frac{\eta'}{\langle \eta \eta' \rangle} \right)^2 \leq 1 + |\xi - \eta|^2 \leq (1 + g_{c,(y,\eta)}(x-y, \xi-\eta)). \]

Combining the last three lines yields (3.4).

iv. Estimate (3.8) establishes the desired estimate for m_c. For $m_c^{1/2}$ it follows that

\[m_c^{1/2}(y,\eta) \leq m_c^{1/2}(1 + g_{c,(y,\eta)}(x-y, \xi-\eta))^{1/2}, \]

verifying [9 4.9.5.12] with $C = 1$ and $N = 1/2$. □
4. Estimate for the propagation in x_1

We use three facts about the Weyl calculus when the weights and metrics satisfy the uniform continuity and temperance estimates as in Lemma 3.1.

W.1. The adjoint with respect to the $L^2(\mathbb{R}^d)$ scalar product of $b^w(x, D)$ is equal to the Weyl operator with symbol $b^w(x, \xi)$.

W.2. If b_x and c_x are bounded in $S(m_{1,1}, g_x)$ and $S(m_{2,2}, g_x)$, respectively, then the product $b^w(x, D)c^w(x, D)$ is a Weyl operator with symbol bounded in $S(m_{1,1}m_{2,2}, g_x)$, and the operators

$$c^w(x, D)b^w(x, D) - (c_x b_x)^w(x, D)$$

have Weyl symbols bounded in $S(h, m_{1,1}m_{2,2}, g_x)$.

W.3. If $b_x(x, \xi)$ is bounded in $S(1, g_x)$, then $b^w(x, D)$ is bounded in $L(L^2(\mathbb{R}^d))$.

Proofs. The first is immediate from the definition [10, pg. 151].

The second is the leading symbol part of [9, Theorem 18.5.4].

The third is a consequence of the proof of [10, Theorem 18.6.3]. The reader can verify that the bound proved in Theorem 18.6.3 depends only on the constants in the slow variation, continuity and temperance estimates together with the $S(1, g_x)$ bounds on the symbol.

Examples. Consider W.2 when one of the operators has symbol in $S(m_{1,1}, g_x)$ and the other in $S(1, g_x)$. The first operator is not as singular as an operator of order 1 since m_1 is smaller than ξ' most particularly when $\xi' \to \infty$. The error term when one uses the product of the leading symbols belongs to $S(h, m_{1,1} m_{2,2}, g_x) = S(1, g_x)$. The gain $h_x = 1/m_x$ is less than one order but is exactly what is needed so that the error has weight 1 and will therefore be a bounded operator.

The next result is elementary. For ϵ fixed, it considers a^w_{ϵ} as a bounded perturbation of $A_0 \partial_t$. The bounded terms grow like $1/\epsilon$, which leads to very crude estimates as $\epsilon \to 0$.

Lemma 4.1. i. For any $f \in H^\infty(\mathbb{R}^d) := \bigcap_s H^s(\mathbb{R}^d)$, there is a unique solution

$$u^\epsilon \in \bigcap_s C^s(\mathbb{R}; H^s(\mathbb{R}^d))$$

to the initial value problem

$$\partial_t u^\epsilon + a^w_{\epsilon}(t, x, D)u^\epsilon + \hat{B}(t, x)u^\epsilon = 0,$$

$$u^\epsilon |_{t=0} = f,$$

with \hat{B} defined in (2.2). There is a constant c independent of t, ϵ, f, so that

$$\sup_{t \in \mathbb{R}} e^{-c|t|/\epsilon} \|u^\epsilon(t)\|_{L^2(\mathbb{R}^d)} \leq c \|f\|_{L^2(\mathbb{R}^d)},$$

(4.1)

ii. If the spectrum of A_1 belongs to $[\lambda_{\min}, \lambda_{\max}]$ for all (t, x) and $\text{supp} \; f \subset \{a \leq x_1 \leq b\}$, then

$$\text{supp} \; u^\epsilon \cap \{t \geq 0\} \subset \left\{a + \lambda_{\min} t \leq x_1 \leq b + \lambda_{\max} t\right\}.$$

(4.2)

Proof. i. Write

$$\left(A^w_{\epsilon} + \hat{B}\right) - A_1(t, x)\partial_x = c^w_{\epsilon}(t, x, D'),$$

where $c^w_{\epsilon}(t, x, D')$ is the characteristic function of \mathbb{R}^d.\
with

\[c_\epsilon(t, x, \xi) := \sum_{j=2}^{d} A_j(t, x) \frac{i \xi_j}{\langle \xi \rangle^j}. \]

This symbol defines a classical pseudodifferential operator in \(x', D' \) depending smoothly on \(t, x_1 \). In fact

\[\epsilon c_\epsilon(t, x, \xi) \text{ is bounded in } S^4(\mathbb{R}^{d+1}_{t,x} \times \mathbb{R}^{d-1}_\xi) \quad \text{(hence in } S(1, g_\epsilon)). \]

Thus,

\[(4.3) \quad \forall s, \exists c_s, \forall t, \quad \| c^w_\epsilon(t, x, D') \|_{L^2(H^s(\mathbb{R}^d_x))} \leq \frac{c(s)}{\epsilon}. \]

In addition, \(c^w_\epsilon \) is local in \(x_1 \). That is, for any \(t \),

\[\omega \subset \mathbb{R} \text{ and } \text{supp } k \subset \omega \times \mathbb{R}^{d-1}_x \implies \text{supp } c^w_\epsilon(t, x, D')k \subset \omega \times \mathbb{R}^{d-1}_x. \]

Write the differential equation defining \(u^\epsilon \) as

\[(4.4) \quad (r \partial_t + rA_1)u^\epsilon + rA_1(t, x) \partial_t u^\epsilon + r(t, x) c^w_\epsilon(t, x, D) u^\epsilon = 0, \quad r(t, x) := r(t, x, (1, 0, \ldots, 0)), \]

where \(r(t, x, \xi) \) is the symmetrizer. Since \(r \) is strictly positive and \(rA_1 \) is Hermitian symmetric, the operator

\[G := r \partial_t + rA_1 \partial_1 \]

is symmetric hyperbolic. Introduce the growth matrix

\[Z(t, x) := \partial_t r + \partial_1 (rA_1). \]

The differential energy identity for \(G \) is

\[\partial_t \langle rv, v \rangle + \partial_1 \langle rA_1 v, v \rangle = 2 \text{ Re } \langle Gv, v \rangle + \langle Zv, v \rangle. \]

The Cauchy problem for (4.1) is solved by Picard iteration. The first approximation \(u_1^\epsilon \) is the solution of

\[\left(r \partial_t + rA_1 \partial_1 \right) u_1^\epsilon = 0, \quad u_1^\epsilon|_{t=0} = f. \]

This first approximation is independent of \(\epsilon \). For \(\nu > 1 \), approximations are defined by

\[\left(r \partial_t + rA_1 \partial_1 \right) u_\nu^\epsilon = -r(t, x) c^w_\epsilon(t, x, D') u_{\nu-1}^\epsilon, \quad u_{\nu}^\epsilon|_{t=0} = f. \]

Integrating the differential energy law for \(v = u_1^\epsilon \) over \(\mathbb{R}^d \) yields

\[\partial_t (ru_1^\epsilon, u_1^\epsilon) = (Z(t, x)u_1^\epsilon, u_1^\epsilon) \leq c (ru_1^\epsilon, u_1^\epsilon). \]

In particular, there is a constant \(c \) independent of \(\epsilon, t \geq 0 \) so that

\[\| u_1^\epsilon \| \leq c e^{ct} \| f \|. \]

Define \(u_0^\epsilon := 0 \). For \(\nu \geq 2 \), use the differential energy identity for \(v := u_\nu^\epsilon - u_{\nu-1}^\epsilon \).

Estimate

\[\| (G + Z) (u_\nu^\epsilon - u_{\nu-1}^\epsilon) \| = \| (-r c_\epsilon^w + Z) (u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon) \| \leq \frac{c}{\epsilon} \| u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon \|. \]

Integrating the differential energy identity over \(\mathbb{R}^d_x \) yields

\[\partial_t (r(u_\nu^\epsilon - u_{\nu-1}^\epsilon), u_\nu^\epsilon - u_{\nu-1}^\epsilon) \leq \frac{c}{\epsilon} \left(r(u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon), u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon \right). \]
Integrate to find
\[\| (u_\nu^\epsilon - u_{\nu-1}^\epsilon) (t) \| \leq \frac{c}{\epsilon} \int_0^t \| (u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon) (s) \| \, ds \colon= \frac{c}{\epsilon} I \| (u_{\nu-1}^\epsilon - u_{\nu-2}^\epsilon) (s) \| , \]

involving the integration operator \(I \),
\[(I g) (t) := \int_0^t g (s) \, ds. \]

Iterating yields
\[\| (u_\nu^\epsilon - u_{\nu-1}^\epsilon) (t) \| \leq \left(\frac{c}{\epsilon} \right)^{\nu-1} I^{\nu-1} \| u_1^\epsilon (s) \|. \]

Use the estimate
\[P' (g) (t) \leq \frac{1}{(\nu - 1)!} \max_{0 \leq s \leq t} | g (s) | \]

to find
\[\| (u_\nu^\epsilon - u_{\nu-1}^\epsilon) (t) \| \leq \left(\frac{c}{\epsilon} \right)^{\nu-1} \frac{1}{(\nu - 2)!} c \epsilon^t \| f \|. \]

This implies that as \(\nu \to \infty \), \(u_\nu^\epsilon \) converges to a solution \(u^\epsilon \) in \(L^\infty_{\text{loc}} (\mathbb{R}; L^2 (\mathbb{R}^d)) \) satisfying the estimate in i.

Estimates for the derivatives of the \(u_\nu^\epsilon \) can be proved by differentiating the equation \(u_\nu^\epsilon \) and reasoning as above. The details are left to the reader.

Uniqueness is proved by using the energy identity for \(v = u^\epsilon - w^\epsilon \), the difference of two solutions. Reasoning as above yields
\[\partial_t (rv, v) \leq \frac{c}{\epsilon} (rv, v). \]

As the initial value of \(v \) vanishes, it follows that \(v = 0 \).

ii. We prove that for \(t \geq 0 \), \(u^\epsilon \) vanishes for \(x \leq a + \lambda_{\min} t \). The proof that \(u \) vanishes for \(x_1 \geq b + \lambda_{\max} t \) is analogous.

Consider the domain \(\Omega := \{ 0 \leq t \leq \frac{t}{2}, x_1 \leq a + \lambda_{\min} t \} \). Denote by \(\Gamma := \{ 0 \leq t \leq \frac{t}{2}, x_1 = a + \lambda_{\min} t \} \) the lateral boundary. Integrate the differential energy identity applied to \(v = u^\epsilon \) over \(\Omega \) to find
\[(4.5) \quad \int_\Omega (\partial_t (rv, v) + \partial_1 (rA_1 v, v) - 2 \text{Re} \langle Gv, v \rangle - \langle Zv, v \rangle) dt \, dx = 0. \]

Let
\[E (t) := \left(\int_{x_1 \leq a + \lambda_{\min} t} \langle rv^\epsilon, u^\epsilon \rangle \, dx \right)^{1/2}. \]

Integrate by parts to show that
\[(4.6) \quad \int_\Omega (\partial_t (rv, v) + \partial_1 (rA_1 v, v)) dt \, dx = E (t)^2 - E (0)^2 + \int_\Gamma \langle (n_0 r + n_1 r A_1) u^\epsilon, u^\epsilon \rangle \, d\sigma, \]

where \((n_0, n_1, 0, \ldots, 0) \) is the unit outward normal at \(\Gamma \) and \(d\sigma \) is the element of \(d \)-dimensional area on \(\Gamma \). Since \(u^\epsilon \) vanishes for \(x_1 \leq a \), it follows that \(E (0) = 0 \).

Since
\[(G + Z) u^\epsilon = r (t, x) c^\epsilon (t, x, D') u^\epsilon, \]

one has
\[\left| \int_\Omega (2 \text{Re} \langle Gv, v \rangle + \langle Zv, v \rangle) dt \, dx \right| \leq \frac{c}{\epsilon} \int_0^t E (s)^2 \, ds. \]
Combining with (4.5) and (4.6) yields

\[(4.7) \quad E(t)^2 \leq - \int_{\Gamma} \left\langle (n_0 r + n_1 r A_1) u^\epsilon, u^\epsilon \right\rangle d\sigma + \frac{c}{\epsilon} \int_0^t E(s)^2 \, ds. \]

The unit outward normal to \(\Gamma \) is a positive multiple of \((-\lambda_{\min}, 0, \ldots, 0) \). Thus \(n_0 r + n_1 r A_1 \) is a Hermitian matrix which is a positive multiple of

\[-\lambda_{\min} r + r A_1 = r^{1/2} \left(-\lambda_{\min} I + r^{1/2} A_1 r^{-1/2} \right) r^{-1/2}.\]

The matrix \(r^{1/2} A_1 r^{-1/2} \) has the same eigenvalues as \(A_1 \), thus real and \(\geq \lambda_{\min} \). Therefore the matrix in parentheses has real nonnegative eigenvalues. Thus the eigenvalues of \(-\lambda_{\min} r + r A_1 \) are nonnegative, so this matrix is nonnegative Hermitian. Therefore

\[\int_{\Gamma} \left\langle (n_0 r + n_1 r A_1) u^\epsilon, u^\epsilon \right\rangle d\sigma \geq 0.\]

Use this in (4.7) to find

\[E(t)^2 \leq \frac{c}{\epsilon} \int_0^t E(s)^2 \, ds.\]

Gronwall’s inequality implies that \(E(t) \) is identically zero, completing the proof of ii. \(\square \)

The main analytical result proves estimates for \(u^\epsilon \) that are independent of \(\epsilon \). It is here that the Weyl calculus is used.

Proposition 4.2. For each \(s \in \mathbb{R} \), there is a constant \(c = c(s) \) independent of \(\epsilon, t, f \) so that

\[\sup_{t \in \mathbb{R}} e^{-c|t|} \|u^\epsilon(t)\|_{H^s(\mathbb{R}^d)} \leq c \|f\|_{H^s(\mathbb{R}^d)}.\]

Proof. The case \(s = 0 \) implies the general case by a straightforward commutation argument estimating \((1 + |D|^2)^{s/2} u \). We prove the estimate for \(s = 0 \). Since the \(r^s(t, x, \xi) \) are Hermitian, the operators \(r^s(t, x, D) \) are selfadjoint by W.1. We first show that there are strictly positive constants \(C_j \) independent of \(\epsilon \) so that

\[(4.8) \quad R'(t) := r^s(t, x, D) + C_1 \langle D_1, (D'/\epsilon D') \rangle^{-1} \geq C_2 I.\]

To prove (4.8), choose \(C_2 > 0 \) so that

\[\forall \ t, x, \xi, \quad r(t, x, \xi) \geq 2 C_2 I.\]

Choose smooth \(s(t, x, \xi) \) equal to the positive Hermitian square root of \(r(t, x, \xi) - C_2 I \). Then \(s \) belongs to the classical symbol class \(S^1(\mathbb{R}^{1+d} \times \mathbb{R}^d) \). Let

\[s_\epsilon(t, x, \xi) := s(t, x, \xi, \xi'/\langle \xi \rangle).\]

Then \(s_\epsilon \) and \(r_\epsilon \) are bounded families of symbols in \(S(1, g_\epsilon) \). Since \(s_\epsilon(t, x, \xi)^2 = r_\epsilon(t, x, \xi) - C_2 I \), it follows that

\[(4.9) \quad r^s_\epsilon(t, x, D) = C_2 I + (s^\epsilon_\epsilon(t, x, D))^2 + \rho^s_\epsilon(t, x, D).\]

W.2 shows that the Hermitian symbols \(\rho_\epsilon(t, x, \xi) \) are bounded in \(S(h_\epsilon, g_\epsilon) = S(1/m_\epsilon, g_\epsilon) \).

The family of operators

\[\langle D_1, (D'/\epsilon D') \rangle^{1/2} \rho^s_\epsilon(t, x, D) \langle D_1, (D'/\epsilon D') \rangle^{1/2}\]
is the product of operators with symbols in $S(m_{e}^{1/2}, g_{e})$, $S(m_{e}^{-1}, g_{e})$, and $S(m_{e}^{1/2}, g_{e})$, respectively. **W.2** shows that its symbols are bounded in $S(1, g_{e})$.

By **W.3**, there is a constant C_{1} so that for all ϵ, f,

$$
\left(\langle D_{1}, \langle D'/\epsilon D'\rangle^{1/2} \rho_{w}^{\epsilon}(t, x, D) \langle D_{1}, \langle D'/\epsilon D'\rangle^{1/2} f, f \rangle \right) \leq C_{1}(f, f).
$$

The substitution $g = \langle D'/\epsilon D' \rangle^{1/2} f$ shows that this is equivalent to

$$
\left(\rho_{w}^{\epsilon}(t, x, D)g, g \right) \leq C_{1}(\langle D_{1}, \langle D'/\epsilon D' \rangle^{-1/2} f, \langle D_{1}, \langle D'/\epsilon D' \rangle^{-1/2} f \rangle)
$$

$$
= C_{1}(\langle D_{1}, \langle D'/\epsilon D' \rangle^{-1} f, f \rangle).
$$

This together with (4.9) proves the desired positivity (4.8).

Continuing with the proof of the proposition, compute

$$
\partial_{t}(R^{\epsilon} u^{\epsilon}(t), u^{\epsilon}(t)) = (R^{\epsilon} u_{1}^{\epsilon}, u_{1}^{\epsilon}) + (R^{\epsilon} u_{2}^{\epsilon}, u_{2}^{\epsilon}) + (R_{t}^{\epsilon} u_{1}^{\epsilon}, u_{2}^{\epsilon}).
$$

The operators $R_{t}^{\epsilon} = (r_{1}^{\epsilon})^{\ast}(t, x, D)$ have symbols bounded in $S(1, g_{e})$. By **W.3**, the last term is bounded by $C_{1}\|u^{\epsilon}(t)\|_{L^{2}(\mathbb{R}^{n})}^{2}$. Such terms with constant independent of ϵ are negligible in the computation that follows.

The sum of the other two terms is equal to

$$
\left([R^{\epsilon} a_{w}^{\epsilon}(t, x, iD) - (R^{\epsilon} a_{w}^{\epsilon}(t, x, iD))^{\ast}]u, u \right).
$$

The operator R^{ϵ} is a sum of two terms and we treat them in turn.

The first summand is $r_{w}^{\epsilon}(t, x, D)$. Since $r_{e}(t, x, \xi) \in S(1, g_{e})$, $a_{e}(t, x, \xi) \in S(m_{e}, g_{e})$, and $r_{e}(t, x, \xi)a_{e}(t, x, \xi)$ is Hermitian, **W.1** together with **W.2** implies that the family of symbols of

$$
r_{w}^{\epsilon}(t, x, D) a_{w}^{\epsilon}(t, x, D) - (r_{w}^{\epsilon}(t, x, D) a_{w}^{\epsilon}(t, x, D))^{\ast}
$$

is bounded in $S(h_{e}m_{e}, g_{e})$.

As $h_{e} = 1/m_{e}$, this shows that the symbols are bounded in $S(1, g_{e})$.

The second summand is $C_{1}\langle D_{1}, \langle D'/\epsilon D' \rangle^{-1} \rangle$. Since

$$
\langle \xi_{1}, \xi_{2} \rangle \langle \xi_{2}, \xi_{1} \rangle^{-1}
$$

is bounded in $S(1/m_{e}, g_{e})$,

W.2 implies that the two families of operators,

$$
C_{1}\langle D_{1}, \langle D'/\epsilon D' \rangle^{-1} \rangle a_{w}^{\epsilon}(t, x, D)
$$

and

$$
\left(C_{1}\langle D_{1}, \langle D'/\epsilon D' \rangle^{-1} \rangle a_{w}^{\epsilon}(t, x, D) \right)^{\ast}
$$

have symbols bounded in $S(1, g_{e})$.

Combining shows that the symbols of the family of operators

$$
R^{\epsilon} a_{w}^{\epsilon}(t, x, iD) - (R^{\epsilon} a_{w}^{\epsilon}(t, x, iD))^{\ast}
$$

are bounded in $S(1, g_{e})$. By **W.3**, there is a constant C independent of ϵ so that

$$
\left\|\left(R^{\epsilon} a_{w}^{\epsilon}(t, x, iD) - (R^{\epsilon} a_{w}^{\epsilon}(t, x, iD))^{\ast}\right)u(t)\right\| \leq C\|u(t)\|.
$$

Therefore,

$$
\partial_{t}(R^{\epsilon} u^{\epsilon}(t), u^{\epsilon}(t)) \leq C\|u^{\epsilon}(t)\|^{2},
$$

with C independent of $\epsilon \in [0, 1]$.

From the uniform positivity of the R^{ϵ} it follows that

$$
\partial_{t}(R^{\epsilon} u^{\epsilon}(t), u^{\epsilon}(t)) \leq C_{1}(R^{\epsilon} u^{\epsilon}(t), u^{\epsilon}(t)).
$$

So,

$$
(R^{\epsilon}(t) u^{\epsilon}(t), u^{\epsilon}(t)) \leq e^{C_{1}|t|}(R^{\epsilon}(0) u^{\epsilon}(0), u^{\epsilon}(0)).$$
Then, with constants independent of ϵ,
\[
\|u^\epsilon(t)\|^2 \leq \frac{1}{C_2} (R^u u^\epsilon(t), u^\epsilon(t)) \leq C_2 e^{C_1|t|} (R^u(0)u^\epsilon(0), u^\epsilon(0)) \leq C_2 e^{C_1|t|} \|u(0)\|^2.
\]
This completes the proof. \hfill \square

Corollary 4.3. For any $T > 0$, u^ϵ converges weak star in $L^\infty([-T, T]; L^2(\mathbb{R}^d))$ to the solution u of equation (2.2) with initial value f.

Proof. We have just proved that the family u^ϵ is bounded in $L^\infty([-T, T]; L^2(\mathbb{R}^d))$. Suppose that $w \in L^\infty([-T, T]; L^2(\mathbb{R}^d))$ is the weak star limit of a subsequence u^{ϵ_k} with $\epsilon_k \to 0$ as $k \to \infty$. To prove the proposition it suffices to show that w solves the initial value problem which uniquely determines u. That is, it suffices to establish that
\[
\partial_t w + \sum_{j=1}^d A_j(t, x)\partial_j w + B(t, x)w = 0,
\]
in the sense of distributions, and that the initial value of w at $t = 0$ is f.

We split the verification into $t \geq 0$ and $t \leq 0$ and present the details of the first. For the $t \geq 0$ half, it suffices to show that for all $\phi \in C_0^\infty(\mathbb{R}^{1+d})$,
\[
(4.10) \quad 0 = \int_0^\infty \int_{\mathbb{R}^d} \langle w, -\partial_t \phi + a^w(t, x, D)^* \phi + \tilde{B}^* \phi \rangle \ dt \ dx + \int_{\mathbb{R}^d} \langle f, \phi(0, x) \rangle \ dx.
\]
Begin with the weak form of the equation for u^ϵ,
\[
(4.11) \quad 0 = \int_0^\infty \int_{\mathbb{R}^d} \langle u^\epsilon, -\partial_t \phi + a^w(t, x, D)^* \phi + \tilde{B}^* \phi \rangle \ dt \ dx + \int_{\mathbb{R}^d} \langle f, \phi(0, x) \rangle \ dx.
\]
Choose $T > 0$ so that ϕ is supported in $|t| < T$. Then,
\[
u^{\epsilon_k} \to w \quad \text{weakly in } L^2([0, T] \times \mathbb{R}^d).
\]

Compute
\[
a^w(t, x, D)^* = \left(A_1 \partial_1 - \frac{\partial_1 A_1}{2} \right)^* + c^w(t, x, D)^* = -A_1^* \frac{\partial}{\partial x_1} + \frac{\partial_1 A_1^*}{2} + (c_s^w(t, x, D).
\]
The first term from $(a^w_\epsilon)^*$
\[
\left(-A_1^* \frac{\partial}{\partial x_1} + \frac{\partial_1 A_1^*}{2} \right) \phi, \quad \text{is independent of } \epsilon.
\]
The classical calculus of pseudodifferential operators implies that for all s
\[
(c_s^w(t, x, D') \phi \to (c_s^w)(t, x, D') \phi \in H^s([0, T] \times \mathbb{R}^d), \quad \text{as } \epsilon \to 0.
\]
Therefore as $k \to \infty$,
\[
-\partial_t \phi + a^{\epsilon_k}(t, x, D)^* \phi + \tilde{B}^* \phi \to -\partial_t \phi + a^w(t, x, D)^* \phi + \tilde{B}^* \phi \in H^s([0, T] \times \mathbb{R}^d).
\]
Passing to the limit $k \to \infty$ in (4.11) yields (4.10), completing the proof. \hfill \square

Proof of Proposition 2.1. Combining the Corollary 4.3 with Lemma 4.1.ii proves Proposition 2.1. \hfill \square
5. End of proof of Theorem 1.2

Begin with two corollaries of Proposition 2.1.

Corollary 5.1. Suppose that L is symmetrizable hyperbolic, ξ is a unit covector, and, for all (t,x) the eigenvalues of $\sum_j A_j(t,x)\xi_j$ are $\leq \lambda_{\max}$. Then if $s \in \mathbb{R}$, $u \in C(\mathbb{R} : H^s(\mathbb{R}^d))$ satisfies $Lu = 0$, and $\text{supp} u(0) \subset \{x, \xi \leq b\}$, then for $t \geq 0$,

\begin{equation}
(\text{supp } u \cap \{t \geq 0\}) \subset \left\{x, \xi \leq b + \lambda_{\max} t\right\}.
\end{equation}

Proof. An approximation argument reduces to the case $u(0) \in \bigcap_s H^s(\mathbb{R}^d)$.

An orthogonal transformation taking ξ to $(1,0,\ldots,0)$ reduces this to Proposition 2.1 in the case $a = -\infty$. □

Corollary 5.2. Suppose that L is symmetrizable hyperbolic and that Γ is a proper convex cone in $\{t \geq 0\}$ so that for all t,x, $\Gamma\cap t \subset \Gamma$. Then if $s \in \mathbb{R}$, and $u \in C(\mathbb{R} : H^s(\mathbb{R}^d))$ satisfies $Lu = 0$, then

\begin{equation}
(\text{supp } u \cap \{t \geq 0\}) \subset \bigcup_{x \in \text{supp } u(0)} \left(x + \Gamma\right).
\end{equation}

Proof: Writing the initial datum as a sum of distributions with support in small balls, it suffices to prove the corollary for data with support in a small ball.

By translation invariance it suffices to prove the corollary for data with support in balls centered at the origin. Suppose that $\text{supp } u(0) \subset \{|x| \leq r\}$.

Denote by \mathcal{T}_Γ the dual cone to Γ. Since Γ is a proper future cone it follows that $dt = (1,0,\ldots,0)$ belongs to the interior of \mathcal{T}_Γ.

Since Γ contains $\Gamma\cap t, x$ for all t,x, it follows that $\mathcal{T} \subset \mathcal{T}_\Gamma$ for all t,x. Therefore \mathcal{T} is given by an equation

\begin{equation}
\tau \geq \tau(\xi) \geq \sup_{t,x} \tau_{\max}(\xi).
\end{equation}

The eigenvalues of $\sum_j A_j(t,x)\xi_j$ are the negatives of the roots τ of $p(t,x,\tau,\xi) = 0$. Therefore,

\begin{equation}
\forall (t,x), \quad \text{spec} \left(\sum_j A_j(t,x)\xi_j\right) \subset \left\{\lambda \leq \tau_{\max}(t,x,-\xi)\right\} \subset \left\{\lambda \leq (t,\tau)(-\xi)\right\}.
\end{equation}

Corollary 5.1 implies that the support of u is contained in $\{x,\xi \leq r + \tau(\xi)\}$. This is equivalent to $\tau\Gamma + x, \xi \geq 0$. By (5.3), this implies that $\tau\Gamma + x, \xi \geq 0$ for all $(\tau,\xi) \in \mathcal{T}$ with $|\xi| = 1$. By positive homogeneity it extends to all $(\tau,\xi) \in \mathcal{T}$. Therefore,

\begin{equation}
\text{supp } u \subset \left\{(t,x) : \forall (\tau,\xi) \in \mathcal{T}, \quad t\Gamma + x,\xi \leq \tau\right\}.
\end{equation}

From the duality between Γ and \mathcal{T}, (5.5) is equivalent to

\begin{equation}
\text{supp } u \subset \{|x| \leq r\} + \Gamma.
\end{equation}

This proves the desired result when the support of $u(0)$ is contained in a ball centered at the origin. □

To prove Theorem 1.2, use fattened cones as in [16] to generate wiggle room. We fatten Γ by shrinking \mathcal{T}.
Definition. For \(\epsilon > 0 \), define the shrunken timelike cone,
\[
\mathcal{T}_{t, \bar{x}}^{\pm, \epsilon} := \left\{ (\tau, \xi) \in \mathbb{R}^{1+d} : \tau > \tau_{\max}(t, x, \xi) + \epsilon|\xi| \right\}.
\]

Define the fattened propagation cone, \(\Gamma_{t, \bar{x}}^{\pm, \epsilon} \), to be the closed dual cone. Denote by \(\mathcal{E}^{\pm, \epsilon} \) the emissions defined with the \(\Gamma_{t, \bar{x}}^{\pm, \epsilon} \).

The fattened cones, \(\Gamma_{t, \bar{x}}^{\pm, \epsilon} \), are strictly convex, increasing in \(\epsilon \) and contain \(\Gamma_{t, \bar{x}}^{\pm, \epsilon/2} \setminus \{0\} \) in their interior. In addition, \(\bigcap_{0<\epsilon<1} \Gamma_{t, \bar{x}}^{\pm, \epsilon} = \Gamma_{t, \bar{x}}^{\pm} \). It follows that in the limit \(\epsilon \to 0 \) the emissions \(\mathcal{E}^{\pm, \epsilon} \) decrease to \(\mathcal{E}^{\pm} \). The proof of Theorem 1.2 proceeds by a sequence of lemmas.

Lemma 5.3. For any \(\epsilon > 0 \) there is a \(\delta_1 > 0 \) so that
\[
(5.6) \quad \max \{|t - \bar{t}|, |x - \bar{x}|\} \leq 2\delta_1 \quad \Rightarrow \quad \Gamma_{t, \bar{x}}^{\pm, \epsilon} \subset \Gamma_{t, \bar{x}}^{\pm, 2\epsilon}.
\]

Proof. Since
\[
\tau I + \sum_j A_j \xi_j = r^{-1} \left(\tau r + r \sum_j A_j \xi_j \right) = r^{-1} \left(\tau I + r^{-1/2} \left(r \sum_j A_j \xi_j \right) r^{-1/2} \right) r^{1/2},
\]
the roots of \(p(t, x, \tau, \xi) = 0 \) are, for real \(\xi \), the negatives of the eigenvalues of the Hermitian matrix \(r^{-1/2} \left(r \sum_j A_j \xi_j \right) r^{-1/2} \). As the matrix is uniformly Lipschitzian, it follows that \(\tau_{\max} \) is uniformly Lipschitzian on \(\mathbb{R}^{1+d} \). Lemma 5.3 follows. \(\square \)

Lemma 5.4. Suppose that \(L \) is symmetrizable. For each \(0 < \epsilon < 1 \) there is a \(\delta > 0 \) so that if \(u \in C(\mathbb{R}; H^s(\mathbb{R}^d)) \) satisfies \(Lu = 0 \) and \(\bar{\xi} \in \mathbb{R} \), then
\[
\supp u \cap \{ \xi \leq t \leq \xi + \delta \} \subset \mathcal{E}^{\pm, \epsilon}(\supp u(\xi)).
\]

Proof. Given \(\epsilon > 0 \) choose \(\delta_1 > 0 \) so that (5.6) holds.

Decomposing \(u \) with a partition of unity it is sufficient to prove the assertion for \(u \) with \(\supp u(\bar{\xi}) \subset \{|x - \bar{x}| \leq \delta_1/2\} \). Translating coordinates we may suppose that \(\bar{\xi} = 0 \) and \(\bar{x} = 0 \). Let \(\Gamma := \Gamma_{0,0}^{\pm, 2\epsilon} \). Then
\[
\max\{|t|, |x|\} \leq 2\delta_1 \quad \Rightarrow \quad \Gamma_{t, \bar{x}}^{\pm} \subset \Gamma.
\]
Use a localization idea dating at least to Leray [15]. Define a new symmetrizable operator \(\tilde{L} \) which agrees with \(L \) when \(\max\{|t|, |x|\} \leq \delta_1 \) and for which the propagation cones are all contained in \(\Gamma \). Choose a smooth
\[
\Phi : \mathbb{R}^{1+d} \to \{|t|, |x| < 2\delta_1\} \subset \mathbb{R}^{1+d}
\]
so that
\[
\max\{|t|, |x|\} \leq \delta_1 \quad \Rightarrow \quad \Phi(t, x) = (t, x),
\]
\[
\max\{|t|, |x|\} \geq 2\delta_1 \quad \Rightarrow \quad \Phi(t, x) = (0, 0).
\]
Define a modified system of partial differential operators by
\[
\tilde{L} := \partial_t + a^w(\Phi(t, x), \partial) + \tilde{B}(\Phi(t, x)).
\]
Then, \(\tilde{L} \) is symmetrized by \(r(\Phi(t, x), D) \). In addition, \(\tilde{L} \) is equal to \(L \) when \(\max\{|t|, |x|\} \leq \delta_1 \).
Since the range of Φ is contained in the set of points where $\Gamma_{t,x}^+ \subset \Gamma$, it follows that for all t, x the forward propagation cones of \tilde{L} are contained in Γ. Define \tilde{u} to be the solution of

$$\tilde{L}\tilde{u} = 0, \quad \tilde{u}(0) = u(0).$$

Corollary 5.2 implies that for $t \geq 0$,

$$\text{supp } \tilde{u} \subset \text{supp } u(0) + \{ |x| \leq \delta_1/2 \} + \Gamma.$$

Use the elementary bound

$$|\tau_{\text{max}}| \leq \sup_{\mathbb{R}^{1+d} \times \{ |\xi| = 1 \}} \left\| \sum_{j} A_j(t, x) \xi_j \right\| := K,$$

together with $\epsilon < 1$ to conclude that

$$\Gamma \subset \{ |x| \leq (1 + K)t \}.$$

Choose $\delta \leq \delta_1$ so that

$$(1 + K)\delta + \delta_1/2 < \delta_1.$$

Then, for $0 \leq t \leq \delta$, the support \tilde{u} is contained in $|x| \leq \delta_1$ where $L = \tilde{L}$. Thus \tilde{u} solves the same Cauchy problem as u, so by uniqueness, $\tilde{u} = u$. Thus,

$$\text{supp } u \cap \{ 0 \leq t \leq \delta \} \subset \text{supp } u(0) + \Gamma.$$

Since on the support of u, $\Gamma_{t,x}^{+,\epsilon} \subset \Gamma$, this implies that

$$\text{supp } u \cap \{ 0 \leq t \leq \delta \} \subset E^{+,(\epsilon)}(\text{supp } u(0)).$$

This proves the desired propagation result for data of small support and therefore completes the proof of Lemma 5.4.

Proof of Theorem 1.2. For ϵ fixed, one can iterate Lemma 5.4 to conclude that on $t \geq 0$,

$$\text{supp } u \subset E^{+,(\epsilon)}(\text{supp } u(0)).$$

Since the cones $\Gamma^{+,(\epsilon)}$ are convex and decrease to Γ^+, passing to the limit as $\epsilon \to 0$ yields

$$\text{supp } u \subset E^{+}(\text{supp } u(0)),$$

completing the proof.

6. PROOF OF THEOREM 1.1

The proof is of Hömgren type, requiring the solution of initial value problems for the transposed operator,

$$L^\dagger := -\partial_t - \sum_j A_j(t, x)^\dagger \partial_j + \left(B^\dagger - \sum_j \partial_j A_j^\dagger \right).$$

This is possible because the transposed system is symmetrizable.

Proposition 6.1. i. If L is symmetrized by $r(t, x, \xi)$, then the transposed operator is symmetrized by $(r(t, x, \xi)^{-1})^\dagger$. ii. The timelike and propagation cones for L^\dagger are identical to those of L.
Proof. By hypothesis,

\[s(t, x, \xi) := r(t, x, \xi) \sum_j A_j \xi_j \]

is Hermitian symmetric for \(|\xi| \geq 1\). Therefore,

\[r^{-1} s r^{-1} = \left(\sum_j A_j \xi_j \right) r^{-1} \]

is Hermitian symmetric for \(|\xi| \geq 1\). Take the transpose to find that

\[(r^{-1})^\dagger \left(\sum_j A^\dagger_j \xi_j \right) \]

is Hermitian symmetric for \(|\xi| \geq 1\). This proves i.

The characteristic polynomial for \(L^\dagger\) is

\[0 = \det \left(-\tau I - \sum_j A^\dagger_j \xi_j \right) = (-1)^N \det \left(\tau I + \sum_j A_j \xi_j \right) \]

\[= (-1)^N \det \left(\tau I + \sum_j A_j \xi_j \right)^\dagger \]

\[= (-1)^N \det \left(\tau I + \sum_j A_j \xi_j \right) = (-1)^N p(t, x, \tau, \xi). \]

The roots \(\tau(\xi)\) are the same for \(L\) and \(L^\dagger\). Therefore the timelike cones and propagation cones are identical. \(\Box\)

If \(M\) is an embedded hypersurface in \(\mathbb{R}^{1+d}_{t,x}\) which is spacelike at \(m\) and \(\psi(t, x)\) vanishes on \(M\) with \(d\psi(m) \neq 0\), then on a small neighborhood of \(m\), \(\psi\) is a defining function of \(M\). The covector \(d\psi(m)\) is conormal to \(M\), so replacing \(\psi\) by \(-\psi\) if necessary, \(d\psi \in T^+_m\) expresses the fact that \(M\) is spacelike. Then small balls \(B_r(m)\) have a future half defined by \(\psi > 0\). Decreasing \(r\) if necessary one has \(d\psi(t, x) \in T^+_m\) for all \((t, x)\) with \(|(t, x) - m| \leq r\). In particular, \(M\) is spacelike at all \(\tilde{m} \in M\) with \(|m - \tilde{m}| \leq r\).

Lemma 6.2. With the choices of the preceding paragraph and \(0 < \rho < r\), consider the closed balls

\[\overline{B}_\rho(m) := \left\{ (t, x) : |(t, x) - m| \leq \rho \right\}. \]

There is a \(\rho\) so that

\[\mathcal{E}^-(\overline{B}_\rho(m)) \cap \left\{ |(t, x) - m| = r, \ \psi(t, x) \geq 0 \right\} = \phi. \]

Proof. If not there would be a sequence of points \((t_n, x_n)\) converging to \(m\) and influence curves \(\gamma_n(t) = (t, x_n(t))\) with \(-\infty < t \leq \tilde{t}\) and \(\tilde{t}_n < \tilde{t}\) satisfying

\[|\gamma(\tilde{t}_n, x_n(\tilde{t}_n)) - m| = r \quad \text{and} \quad \psi(\tilde{t}_n, x_n(\tilde{t}_n)) \geq 0. \]

Writing \(m = (\tilde{t}, \tilde{m})\), the first conditions imply that \(\tilde{t}_n \in [\tilde{t} - r, \tilde{t}]\).

For an influence curve, \(\gamma' = (1, x') \in \Gamma_\gamma(t)\). This implies the uniform bound,

\[||x'(t)|| \leq \sup_{t, x: |\xi| = 1} \left\| \sum_j A_j(t, x) \xi_j \right\|, \quad \text{Lebesgue a.e. } t. \]
Ascoli’s Theorem implies that there is a subsequence, still denoted γ_n, which converges uniformly to an influence curve, $\gamma : [t - r, t] \to \mathbb{R}^{1+d}$, $(t_n, x_n) \to m$, and $t_n \to t \in [t - r, t]$. Passing to the limit one finds

$$\gamma(t) = m, \quad |\gamma(t) - m| = r, \quad \text{and} \quad \psi(\gamma(t)) = 0.$$

Since γ is an influence curve and $d\psi$ is timelike, it follows that

$$\frac{d}{dt} \psi(\gamma(t)) > 0 \quad \text{for Lebesgue almost all} \quad t \in [t - r, t].$$

Therefore

$$0 = \psi(m) = \psi(\gamma(t)) > \psi(\gamma(t)) = 0.$$

This contradiction proves the lemma. \hfill \Box

Proof of Theorem 1.1. We show that u vanishes in $B_\rho(m)$ with ρ from Lemma 6.2.

Since L^\dagger is symmetrizable hyperbolic from Proposition 6.2, for any $\phi \in C_0^\infty(B_\rho(m))$ we can define $v \in \bigcap_{s \in \mathbb{N}} C^s(\mathbb{R}; H^s(\mathbb{R}^d))$ to be the solution of of the Cauchy problem

$$L^\dagger v = \phi, \quad v|_{t = t^\rho} = 0.$$

The precise finite speed result together with Duhamel’s formula implies that

$$\text{supp } v \subset E^-(\text{supp } \phi) \subset E^-(B_\rho(m)).$$

We next complete the proof in the case that $u \in C^1(B_r(m))$. Since u is supported in the future half of B_ρ, the lemma implies that at each point of $\partial B_r(m)$ one of u or v vanishes. Therefore, integration by parts shows that

$$\int_{B_r(m)} \langle Lu, v \rangle \, dx = \int_{B_r(m)} \langle u, L^\dagger v \rangle \, dx.$$

From the differential equations satisfied by u and v, one finds

$$0 = \int_{B_r(m)} \langle u, \phi \rangle \, dx.$$

Since $\phi \in C_0^\infty(B_\rho(m))$ is arbitrary, this is equivalent to $u = 0$ on $B_\rho(m)$, and Theorem 1.1 is proved for $u \in C^1(B_r(m))$.

In the case of distribution solutions, $u \in \mathcal{D}'(B_r(m))$, we reason as follows. Lemma 6.2 implies that there is a compact set $K \subset B_r(m)$ so that for all $\phi \in C_0^\infty(B_\rho(m))$,

$$\text{supp } v \cap \text{supp } u \subset K.$$

Choose a test function $\chi \in C_0^\infty(B_r(m))$ so that $\chi = 1$ on a neighborhood of K. Since $Lu = 0$ in $B_r(m)$, one has

$$\langle u, L^\dagger(\chi v) \rangle = 0.$$

Expand

$$L^\dagger(\chi v) = \chi L^\dagger v + (\partial_t \chi + \sum_j A_j \partial_j \chi) v = \chi \phi + (\partial_t \chi + \sum_j A_j \partial_j \chi) v.$$

The support of the second term is disjoint from K. It follows that for all $(t, x) \in B_r(m)$ at least one of the factors

$$u, \quad \partial_t \chi + \sum_j A_j \partial_j \chi, \quad \text{or} \quad v$$
vanishes on a neighborhood of \((t,x)\). Therefore,
\[
\langle u, (\partial_t \chi + \sum_j A_j \partial_j \chi) v \rangle = 0.
\]

Since \(\chi = 1\) on \(\text{supp } v \cap \text{supp } u \supset \text{supp } \phi \cap \text{supp } u\), it follows that
\[
\langle u, \chi \phi \rangle = \langle u, \phi \rangle.
\]
Combining equations (6.2) to (6.5) yields
\[
\langle u, \phi \rangle = 0.
\]
Therefore \(u = 0\) on \(B_p(m)\).

\[\square\]

ACKNOWLEDGMENT

When the author was struggling to prove the central estimate, Proposition 4.2, he was aided by conversations with David Dos Santos, Patrick Gérard, and Guy Métivier. The author thanks them warmly.

REFERENCES

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
E-mail address: rauch@umich.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use