Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Precise finite speed and uniqueness in the Cauchy problem for symmetrizable hyperbolic systems

Author: Jeffrey Rauch
Journal: Trans. Amer. Math. Soc. 363 (2011), 1161-1182
MSC (2000): Primary 35L45; Secondary 35S10
Published electronically: October 21, 2010
MathSciNet review: 2737261
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Precise finite speed, in the sense of the domain of influence being a subset of the union of influence curves through the support of the initial data, is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a Hölmgren style duality argument. Sharp finite speed is derived from an estimate for propagation in each direction. Propagation in a fixed direction is proved by regularizing the problem in the orthogonal directions. Uniform estimates for the regularized equations are proved using pseudodifferential techniques of Beals-Fefferman type.

References [Enhancements On Off] (What's this?)

  • 1. R. Beals and C. Fefferman, Spatially inhomogeneous pseudo-differential operators, Comm. Pure Appl. Math. 27 (1974), 1-24. MR 0352747 (50:5234)
  • 2. M.D. Bronshstein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Mosk. Mat. Obshch. 41(1980), 83-99, English transl., Trans. Moscow. Math. Soc. 1982, No.1, 87-103. MR 611140 (82m:35094)
  • 3. A. P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones difereciales hiperbolicas, Cursos y seminarios de matematica, Fascicule 3, Universidad de Buenos Aires, 1960. MR 0123834 (23:A1156)
  • 4. R. Courant, Methods of Mathematical Physics vol II, Interscience Publ., 1962.
  • 5. K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7(1954), 517-550. MR 0062932 (16:44c)
  • 6. K.O. Friedrichs and P.D. Lax, Boundary value problems for first order operators, Comm. Pure Appl. Math. 18(1965), 355-388. MR 0174999 (30:5186)
  • 7. K.O. Friedrichs and P. D. Lax, On symmetrizable differential operators, in Singular Integrals, Proc. Symp. Pure Math., Chicago, A.M.S. (1966), 128-137. MR 0239256 (39:613)
  • 8. L. Gårding, Linear hyperbolic partial differential operators with constant coefficients, Acta Math. 85(1951), 1-62. MR 0041336 (12:831g)
  • 9. L. Hörmander, The Analysis of Linear Partial Differential Operators vol. I (§9.6), Grundlehren der mathematischen Wissenschaften #256, Springer-Verlag, 1983.
  • 10. L. Hörmander, The Analysis of Linear Partial Differential Operators vol. III, Grundlehren der mathematischen Wissenschaften #274, Springer-Verlag, 1985.
  • 11. H. O. Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand. 7(1959),71-80. MR 0110952 (22:1820)
  • 12. J.L. Joly, G. Métivier, J. Rauch, Hyperbolic domains of determinacy and Hamilton-Jacobi equatiions, J. Hyp. Part. Diff. Eq., 2(2005), 713-744. MR 2172702 (2006e:35033)
  • 13. P. D. Lax, Lectures on Hyperbolic Partial Differential Equations, Stanford Lecture Notes, 1963.
  • 14. P. D. Lax and L. Nirenberg, On stability for difference schemes, a sharp form of Gårding's inequality, Comm. Pure Appl. Math.19 (1966), 473-492. MR 0206534 (34:6352)
  • 15. J. Leray, Hyperbolic Differential Equations, Institute for Advanced Study, 1953. MR 0063548 (16:139a)
  • 16. J. Rauch, Precise finite speed with bare hands, Methods Appl. Anal. 12(2005), 267-277. MR 2254010 (2008k:35300)
  • 17. J. Rauch, Finite speed for symmetrizable hyperbolic systems, J. Hyp. Diff. Eq., to appear.
  • 18. S. Spagnolo and G. Taglialatela, Quasisymmetrizers and semilinear hyperbolic systems, preprint.
  • 19. R. Vaillancourt, A simple proof of the Lax-Nirenberg theorems, Comm. Pure Appl. Math 23(1970), 151-163. MR 0257824 (41:2473)
  • 20. R. Vaillancourt, On the stability of Friedrichs' scheme and the modified Lax-Wendroff scheme, Math. Comp. 24(1970), 767-770. MR 0277125 (43:2862)
  • 21. M. Yamaguti, Sur l'inegalité d'énergie pour le système hyperbolique, Proc. Jap. Acad. 35(1959), 37-41. MR 0105565 (21:4304)
  • 22. M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its applications, Publ. Res. Inst. Math. Sci. series A 3(1967/1968), 151-166. MR 0226172 (37:1762)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35L45, 35S10

Retrieve articles in all journals with MSC (2000): 35L45, 35S10

Additional Information

Jeffrey Rauch
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Keywords: Finite speed, domain of influence, symmetrizable hyperbolic system, uniqueness in the Cauchy problem
Received by editor(s): July 2, 2008
Published electronically: October 21, 2010
Additional Notes: This research was partially supported by the National Science Foundation under grant NSF DMS 0405899
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society