Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

   

 

Width and flow of hypersurfaces by curvature functions


Authors: Maria Calle, Stephen J. Kleene and Joel Kramer
Journal: Trans. Amer. Math. Soc. 363 (2011), 1125-1135
MSC (2010): Primary 53C44
Published electronically: October 14, 2010
MathSciNet review: 2737259
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we generalize a well-known estimate of Colding-Minicozzi for the extinction time of convex hypersurfaces in Euclidean space evolving by their mean curvature to a much broader class of parabolic curvature flows.


References [Enhancements On Off] (What's this?)

  • 1. Ben Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151–171. MR 1385524 (97b:53012), 10.1007/BF01191340
  • 2. B. Andrews. Moving surfaces by non-concave curvature functions. arXiv:math math.DG/0402273
  • 3. Ben Andrews, Flow of hypersurfaces by curvature functions, Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems (Canberra, 1990) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 26, Austral. Nat. Univ., Canberra, 1991, pp. 1–10. MR 1139026 (92k:53010)
  • 4. B. Andrews. Pinching estimates and motion of hypersurfaces by curvature functions. math.DG/0402311v1
  • 5. Ben Andrews, Volume-preserving anisotropic mean curvature flow, Indiana Univ. Math. J. 50 (2001), no. 2, 783–827. MR 1871390 (2002m:53105), 10.1512/iumj.2001.50.1853
  • 6. Karol Borsuk, Sur la courbure totale des courbes fermées, Ann. Soc. Polon. Math. 20 (1947), 251–265 (1948) (French). MR 0025757 (10,60e)
  • 7. T. H. Colding and W. P. Minicozzi. Width and mean curvature flow. math.DG/0705.3827v2
  • 8. T. H. Colding and W. P. Minicozzi. Width and finite extinction time of Ricci Flow. math.DG/0707.0108v1
  • 9. T. H. Colding and W. P. Minicozzi. Estimates for the extinction time for the Ricci Flow on certain $ 3$-manifolds and a question of Perelman. arXiv:math/0308090v3
  • 10. Werner Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), no. 1, 238–252 (German). MR 1512528, 10.1007/BF01454836
  • 11. Gerhard Huisken and Alexander Polden, Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 45–84. MR 1731639 (2000j:53090), 10.1007/BFb0092669
  • 12. Felix Schulze, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z. 251 (2005), no. 4, 721–733. MR 2190140 (2006h:53065), 10.1007/s00209-004-0721-5
  • 13. Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417 (87a:49001)
  • 14. Leon Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), no. 2, 281–326. MR 1243525 (94k:58028)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C44

Retrieve articles in all journals with MSC (2010): 53C44


Additional Information

Maria Calle
Affiliation: Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany
Email: maria.calle@aei.mpg.de

Stephen J. Kleene
Affiliation: Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Email: skleene@math.jhu.edu, skleene@math.mit.edu

Joel Kramer
Affiliation: Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
Email: jkramer@math.jhu.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-2010-05057-3
Received by editor(s): April 18, 2008
Published electronically: October 14, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia