Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Frames and degenerations of monomial resolutions


Authors: Irena Peeva and Mauricio Velasco
Journal: Trans. Amer. Math. Soc. 363 (2011), 2029-2046
MSC (2000): Primary 13F20
DOI: https://doi.org/10.1090/S0002-9947-2010-04980-3
Published electronically: October 25, 2010
MathSciNet review: 2746674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study free resolutions of monomial ideals in a polynomial ring.


References [Enhancements On Off] (What's this?)

  • 1. E. Batzies and V. Welker: Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543 (2002), 147-168. MR 1887881 (2003b:13017)
  • 2. D. Bayer, I. Peeva, and B. Sturmfels: Monomial resolutions, Math. Research Letters 5 (1998), 31-46. MR 1618363 (99c:13029)
  • 3. D. Bayer and B. Sturmfels: Cellular resolutions, J. Reine Angew. Math. 502 (1998), 123-140. MR 1647559 (99g:13018)
  • 4. T. Clark: Poset Resolutions and Lattice-Linear Monomial Ideals,J. Algebra 323 (2010), no. 4, 899-919. MR 2578585
  • 5. H. Charalambous and A. Tchernev: Free resolutions for multigraded modules: A generalization of Taylor's construction, Math. Res. Lett. 10 (2003), 535-550. MR 1995792 (2004e:13020)
  • 6. S. Eliahou and M. Kervaire: Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1-25. MR 1037391 (91b:13019)
  • 7. V. Gasharov, T. Hibi, and I. Peeva: Resolutions of $ {\bf a}$-stable ideals, J. Algebra 254 (2002), 375-394. MR 1933875 (2003j:13014)
  • 8. V. Gasharov, I. Peeva, and V. Welker: The lcm-lattice in monomial resolutions, Math. Research Letters 6 (1999), 521-532. MR 1739211 (2001e:13018)
  • 9. M. Jöllenbeck and V. Welker: Resolution of the residue field via algebraic discrete Morse theory, Memoirs of the AMS, Volume 197, Number 923, 2009. MR 2488864 (2009m:13017)
  • 10. J. Mermin: The Eliahou-Kervaire resolution is cellular, preprint.
  • 11. E. Miller: The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000), 180-234. MR 1779598 (2001k:13028)
  • 12. G. Kalai: $ f$-vectors of acyclic complexes, Discrete Math., 55 (1985), 97-99. MR 0793634 (86k:52010)
  • 13. A. Tchernev: Representations of matroids and free resolutions for multigraded modules, Adv. Math. 208 (2007), no. 1, 75-134. MR 2304312 (2008i:13020)
  • 14. M. Velasco: Minimal free resolutions that are not supported by a CW-complex, J. Algebra 319 (2008), 102-114. MR 2378063 (2008j:13028)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13F20

Retrieve articles in all journals with MSC (2000): 13F20


Additional Information

Irena Peeva
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853

Mauricio Velasco
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853

DOI: https://doi.org/10.1090/S0002-9947-2010-04980-3
Keywords: Resolutions of monomial ideals
Received by editor(s): August 8, 2008
Received by editor(s) in revised form: June 14, 2009
Published electronically: October 25, 2010
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society