Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hilbert $ \widetilde{\mathbb{C}}$-modules: Structural properties and applications to variational problems


Authors: Claudia Garetto and Hans Vernaeve
Journal: Trans. Amer. Math. Soc. 363 (2011), 2047-2090
MSC (2000): Primary 46F30, 13J99
DOI: https://doi.org/10.1090/S0002-9947-2010-05143-8
Published electronically: November 2, 2010
MathSciNet review: 2746675
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a theory of Hilbert $ \widetilde{\mathbb{C}}$-modules which forms the core of a new functional analytic approach to algebras of generalized functions. Particular attention is given to finitely generated submodules, projection operators, representation theorems for $ \widetilde{\mathbb{C}}$-linear functionals and $ \widetilde{\mathbb{C}}$-sesquilinear forms. We establish a generalized Lax-Milgram theorem and use it to prove existence and uniqueness theorems for variational problems involving a generalized bilinear or sesquilinear form.


References [Enhancements On Off] (What's this?)

  • 1. A. Antonevich and Y. Radyno.
    A general method for constructing algebras of generalized functions.
    Soviet Math. Dokl., 43(3):680-684, 1991. MR 1126090 (92h:46054)
  • 2. J. Aragona, S. O. Juriaans, O. R. B. Oliveira, and D. Scarpalezos.
    Algebraic and geometric theory of the topological ring of Colombeau generalized functions.
    Proc. Edin. Math. Soc. (2), 51(3):545-564, 2007. MR 2465924
  • 3. J. F. Colombeau.
    New Generalized Functions and Multiplication of Distributions.
    North-Holland, Amsterdam, 1984. MR 738781 (86c:46042)
  • 4. J. F. Colombeau.
    Elementary Introduction to New Generalized Functions.
    North-Holland Mathematics Studies 113. Elsevier Science Publishers, 1985. MR 808961 (87f:46064)
  • 5. A. Delcroix, M. F. Hasler, S. Pilipović, and V. Valmorin, Generalized function algebras as sequence space algebras, Proc. Amer. Math. Soc., 132:2031-2038, 2004. MR 2053975 (2004m:46009)
  • 6. E. Farkas, M. Grosser, M. Kunzinger, and R. Steinbauer.
    On the foundations of nonlinear generalized functions I and II.
    Mem. Amer. Math. Soc., 153(729), 2001. MR 1848157 (2002f:46066)
  • 7. C. Garetto.
    Topological structures in Colombeau algebras: Topological $ \widetilde{\mathbb{C}}$-modules and duality theory.
    Acta. Appl. Math., 88(1):81-123, 2005. MR 2163747 (2006h:46035)
  • 8. C. Garetto.
    Topological structures in Colombeau algebras: Investigation of the duals of $ {{\mathcal G}_\mathrm{c}(\Omega)}$, $ {\mathcal{G} (\Omega)}$ and $ \mathcal {G}_{{ }\atop{\hskip-4pt\scriptstyle\mathscr{S}}} (\mathbb{R}^n)$.
    Monatsh. Math., 146(3):203-226, 2005. MR 2184224 (2006h:46036)
  • 9. C. Garetto.
    Closed graph and open mapping theorems for topological $ \widetilde{\mathbb{C}}$-modules and applications.
    Math. Nachr., 282(8), 1159-1188, 2009. MR 2547714
  • 10. C. Garetto.
    Microlocal analysis in the dual of a Colombeau algebra: Generalized wave front sets and noncharacteristic regularity.
    New York J. Math., 12: 275-318, 2006. MR 2259242 (2008d:46051)
  • 11. C. Garetto, T. Gramchev, and M. Oberguggenberger.
    Pseudodifferential operators with generalized symbols and regularity theory.
    Electron. J. Diff. Eqns., 2005 (116), 2005. MR 2174548 (2007f:35312)
  • 12. M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer.
    Geometric theory of generalized functions, volume 537 of Mathematics and its Applications.
    Kluwer, Dordrecht, 2001.
  • 13. M. Grosser, M. Kunzinger, R. Steinbauer, and J. Vickers.
    A global theory of algebras of generalized functions.
    Adv. Math., 166:50-72, 2002. MR 1882858 (2003a:46108)
  • 14. G. Hörmann.
    First-order hyperbolic pseudodifferential equations with generalized symbols.
    J. Math. Anal. Appl., 293(1):40-56, 2004. MR 2052530 (2005f:35347)
  • 15. G. Hörmann and M. V. de Hoop.
    Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients.
    Acta Appl. Math., 67:173-224, 2001. MR 1848743 (2002g:35006)
  • 16. G. Hörmann, M. Oberguggenberger, and S. Pilipovic.
    Microlocal hypoellipticity of linear partial differential operators with generalized functions as coefficients.
    Trans. Amer. Math. Soc., 358:3363-3383, 2006. MR 2218979 (2007a:35017)
  • 17. R. V. Kadison and J. R. Ringrose.
    Fundamentals of the Theory of Operator Algebras, volume I.
    Academic Press, Inc., 1983. MR 719020 (85j:46099)
  • 18. M. Kunzinger and R. Steinbauer.
    Generalized pseudo-Riemannian geometry.
    Trans. Amer. Math. Soc., 354(10):4179-4199, 2002. MR 1926870 (2003g:46046)
  • 19. M. Nedeljkov, S. Pilipović, and D. Scarpalézos.
    The Linear Theory of Colombeau Generalized Functions.
    Pitman Research Notes in Mathematics 385. Longman Scientific & Technical, 1998. MR 1638310 (99m:46096)
  • 20. M. Oberguggenberger.
    Multiplication of Distributions and Applications to Partial Differential Equations.
    Pitman Research Notes in Mathematics 259. Longman Scientific & Technical, 1992. MR 1187755 (94d:46044)
  • 21. M. Oberguggenberger and H. Vernaeve.
    Internal sets and internal functions in Colombeau theory.
    J. Math. Anal. Appl., 341(1):649-659, 2008. MR 2394113 (2009a:46075)
  • 22. D. Scarpalézos.
    Topologies dans les espaces de nouvelles fonctions généralisées de Colombeau. $ {\widetilde{\mathbb{C}}}$-modules topologiques.
    Université Paris 7, 1992.
  • 23. D. Scarpalézos.
    Some remarks on functoriality of Colombeau's construction; topological and microlocal aspects and applications.
    Integral Transform. Spec. Funct., 6(1-4):295-307, 1998. MR 1640520 (99e:46053)
  • 24. D. Scarpalézos.
    Colombeau's generalized functions: Topological structures; microlocal properties. A simplified point of view.
    I. Bull. Cl. Sci. Math. Nat. Sci. Math., 25:89-114, 2000. MR 1842816 (2002f:46068)
  • 25. H. Vernaeve.
    Ideals in the ring of Colombeau generalized numbers.
    Comm. Alg., 38(6):2199-2228, 2010. MR 2675536

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46F30, 13J99

Retrieve articles in all journals with MSC (2000): 46F30, 13J99


Additional Information

Claudia Garetto
Affiliation: Institut für Grundlagen der Bauingenieurwissenschaften, Arbeitsbereich für Technische Mathematik, Leopold-Franzens-Universität, Innsbruck, Austria
Address at time of publication: Department of Mathematics, Imperial College London, London, United Kingdom
Email: claudia@mat1.uibk.ac.at, c.garetto@imperial.ac.uk

Hans Vernaeve
Affiliation: Institut für Grundlagen der Bauingenieurwissenschaften, Arbeitsbereich für Technische Mathematik, Leopold-Franzens-Universität, Innsbruck, Austria
Address at time of publication: Department of Mathematics, Ghent University, Ghent, Belgium
Email: hans.vernaeve@uibk.ac.at, hvernaeve@cage.UGent.be

DOI: https://doi.org/10.1090/S0002-9947-2010-05143-8
Received by editor(s): November 15, 2007
Received by editor(s) in revised form: June 22, 2009
Published electronically: November 2, 2010
Additional Notes: The first author was supported by FWF (Austria), grants T305-N13 and Y237-N13
The second author was supported by FWF (Austria), grants M949-N18 and Y237-N13.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society