Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplicative $ q$-hypergeometric series arising from real quadratic fields


Authors: Kathrin Bringmann and Ben Kane
Journal: Trans. Amer. Math. Soc. 363 (2011), 2191-2209
MSC (2000): Primary 11P81, 11E16, 05A17
DOI: https://doi.org/10.1090/S0002-9947-2010-05214-6
Published electronically: October 28, 2010
MathSciNet review: 2746680
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Andrews, Dyson, and Hickerson showed that 2 $ q$-hypergeometric series, going back to Ramanujan, are related to real quadratic fields, which explains interesting properties of their Fourier coefficients. There is also an interesting relation of such series to automorphic forms. Here we construct more such examples arising from interesting combinatorial statistics.


References [Enhancements On Off] (What's this?)

  • 1. G. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), pages 113-134. MR 814916 (87f:33011)
  • 2. G. Andrews, $ q$-series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc., Providence, RI, 1986. MR 858826 (88b:11063)
  • 3. G. Andrews, F. Dyson, and D. Hickerson, Partitions and indefinite quadratic forms, Invent. Math. 91 (1988), pages 391-407. MR 928489 (89f:11071)
  • 4. G. Andrews and D. Hickerson, Ramanujan's ``lost'' notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), pages 60-105. MR 1123099 (92i:11027)
  • 5. G. Andrews, J. Jimenez-Urroz, and K. Ono, $ q$-series identities and values of certain $ L$-functions, Duke Math. J. 108 (2001), pages 395-419. MR 1838657 (2002e:11055)
  • 6. K. Bringmann and K. Ono The $ f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006), pages 243-266. MR 2231957 (2007e:11127)
  • 7. K. Bringmann and K. Ono, Dyson's ranks and Maass forms, Ann. of Math, 171 (2010), pages 419-449. MR 2630043
  • 8. H. Cohen, $ q$-identities for Maass waveforms, Invent. Math. 91 (1988), pages 409-422. MR 928490 (89f:11072)
  • 9. D. Corson, D. Favero, K. Liesinger, and S. Zubairy, Characters and $ q$-series in $ \mathbb{Q} (\sqrt{2})$, J. Number Theory 107 (2004), pages 392-405. MR 2072397 (2005c:11126)
  • 10. S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), pages 1623-1635. MR 2034322 (2004j:11118)
  • 11. F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), pages 10-15.
  • 12. J. Lovejoy, Lacunary partition functions, Math. Res. Lett. 9 (2002), pages 191-198. MR 1909637 (2003f:11157)
  • 13. J. Lovejoy, Overpartitions and real quadratic fields, J. Number Theory 106 (2004), pages 178-186. MR 2049600 (2005b:11164)
  • 14. J. Lovejoy, Overpartition pairs, Ann. Inst. Fourier 56 (2006), pages 781-794. MR 2244229 (2008a:11128)
  • 15. J. Lovejoy and O. Mallet, n-color overpartitions, twisted divisor functions, and Rogers-Ramanujan identities, South East Asian J. Math. Math. Sci. (Andrews' 70th birthday issue) 6 (2008), pages 23-36. MR 2442094 (2009m:11169)
  • 16. J. Lovejoy and K. Ono, Hypergeometric generating functions for values of Dirichlet and other L-functions, Proc. Nat. Acad. Sci. USA 100 (2003), pages 6904-6909. MR 1982655 (2004h:33037)
  • 17. R. Odoni, On the norms of integers in a full module of an algebraic number field and the distribution of values of binary integral quadratic forms, Mathematica 22 (1975), pages 108-111. MR 0389856 (52:10686)
  • 18. S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988. MR 947735 (89j:01078)
  • 19. S. P. Zwegers, Mock theta-functions and real analytic modular forms, q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), 269-277, Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001. MR 1874536 (2003f:11061)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11P81, 11E16, 05A17

Retrieve articles in all journals with MSC (2000): 11P81, 11E16, 05A17


Additional Information

Kathrin Bringmann
Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
Email: kbringma@math.uni-koeln.de

Ben Kane
Affiliation: Department of Mathematics, Radboud University, Postbus 9010, 6500 GL, Nijmegen, Netherlands
Address at time of publication: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
Email: bkane@mi.uni-koeln.de

DOI: https://doi.org/10.1090/S0002-9947-2010-05214-6
Received by editor(s): December 23, 2008
Received by editor(s) in revised form: September 27, 2009
Published electronically: October 28, 2010
Additional Notes: The first author was partially supported by NSF grant DMS-0757907 and the Alfried-Krupp prize.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society