Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Energy dissipation and self-similar solutions for an unforced inviscid dyadic model

Authors: D. Barbato, F. Flandoli and F. Morandin
Journal: Trans. Amer. Math. Soc. 363 (2011), 1925-1946
MSC (2010): Primary 35Q35, 76B03, 35Q30
Published electronically: November 16, 2010
MathSciNet review: 2746670
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A shell-type model of an inviscid fluid, previously considered in the literature, is investigated in absence of external force. Energy dissipation of positive solutions is proved, and decay of energy like $ t^{-2}$ is established. Self-similar decaying positive solutions are introduced and proved to exist and classified. Coalescence and blow-up are obtained as a consequence, in the class of arbitrary sign solutions.

References [Enhancements On Off] (What's this?)

  • 1. D. Barbato, M. Barsanti, H. Bessaih, F. Flandoli, Some rigorous results on a stochastic GOY model, J. Stat. Phys. 125 (2006), no. 3, 677-716. MR 2281460 (2009c:76034)
  • 2. R. Benzi, B. Levant, I. Procaccia, E.S. Titi, Statistical properties of nonlinear shell models of turbulence from linear advection model: rigorous results, Nonlinearity 20 (2007), no. 6, 1431-1441. MR 2327131 (2008m:76065)
  • 3. L. Biferale, Shell Models of Energy Cascade in Turbulence, Annu. Rev. Fluid. Mech. 35 (2003), 441-468. MR 1967019 (2004b:76074)
  • 4. A. Cheskidov, Blow-up in finite time for the dyadic model of the Navier-Stokes equations, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5101-5120. MR 2415066 (2010a:35180)
  • 5. A. Cheskidov, S. Friedlander, N. Pavlovic, Inviscid dyadic model of turbulence: The fixed point and Onsager's conjecture, J. Math. Phys. 48 (2007), no. 6, 065503, 16 pp. MR 2337019 (2008k:76012)
  • 6. A. Cheskidov, S. Friedlander, N. Pavlovic, An inviscid dyadic model of turbulence: The global attractor, arXiv:math.AP/0610815.
  • 7. P. Constantin, B. Levant, E. S. Titi, Regularity of inviscid shell models of turbulence, Phys. Review E (3) 75 (2007), no. 1, 016304, 1-10. MR 2324676 (2008e:76085)
  • 8. S. Friedlander, N. Pavlovic, Blowup in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math. 57 (2004), no. 6, 705-725. MR 2038114 (2005c:35241)
  • 9. U. Frisch, Turbulence, Cambridge University Press, Cambridge (1995). MR 1428905 (98e:76002)
  • 10. G. Gallavotti, Foundations of Fluid Dynamics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2002. MR 1872661 (2003e:76002)
  • 11. N. H. Katz, N. Pavlovic, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc. 357 (2005), no. 2, 695-708. MR 2095627 (2005h:35284)
  • 12. A. Kiselev, A. Zlatoš, On discrete models of the Euler equation, IMRN 38 (2005), no. 38, 2315-2339. MR 2180809 (2007e:35229)
  • 13. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Dokl. Akad. Nauk. SSSR 30 (1941), 301-305. MR 0004146 (2:327d)
  • 14. F. Waleffe, On some dyadic models of the Euler equations, Proc. Amer. Math. Soc. 134 (2006), 2913-2922. MR 2231615 (2007g:35222)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q35, 76B03, 35Q30

Retrieve articles in all journals with MSC (2010): 35Q35, 76B03, 35Q30

Additional Information

D. Barbato
Affiliation: Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Via Treste 63, 35121 Padova, Italy

F. Flandoli
Affiliation: Department of Applied Mathematics, University of Pisa, Via Buonarroti 1, 56127 Pisa, Italy

F. Morandin
Affiliation: Department of Mathematics, University of Parma, Parco Scienze 53A, 43124 Parma, Italy

Received by editor(s): October 30, 2008
Published electronically: November 16, 2010
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society