Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Evolution of convex lens-shaped networks under the curve shortening flow


Authors: Oliver C. Schnürer, Abderrahim Azouani, Marc Georgi, Juliette Hell, Nihar Jangle, Amos Koeller, Tobias Marxen, Sandra Ritthaler, Mariel Sáez, Felix Schulze and Brian Smith
Journal: Trans. Amer. Math. Soc. 363 (2011), 2265-2294
MSC (2010): Primary 53C44, 35B40
DOI: https://doi.org/10.1090/S0002-9947-2010-04820-2
Published electronically: December 2, 2010
MathSciNet review: 2763716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider convex symmetric lens-shaped networks in $ \mathbb{R}^2$ that evolve under the curve shortening flow. We show that the enclosed convex domain shrinks to a point in finite time. Furthermore, after appropriate rescaling the evolving networks converge to a self-similarly shrinking network, which we prove to be unique in an appropriate class. We also include a classification result for some self-similarly shrinking networks.


References [Enhancements On Off] (What's this?)

  • 1. Uwe Abresch and Joel Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), no. 2, 175-196. MR 845704 (88d:53001)
  • 2. Ben Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc. 16 (2003), no. 2, 443-459. MR 1949167 (2004a:53083)
  • 3. Xinfu Chen and Jong-Shenq Guo, Self-similar solutions of a 2-D multiple-phase curvature flow, Phys. D 229 (2007), no. 1, 22-34. MR 2340176 (2008f:53087)
  • 4. Julie Clutterbuck, Parabolic equations with continuous initial data, arXiv:math.AP/0504455.
  • 5. Tobias H. Colding and William P. Minicozzi, II, Sharp estimates for mean curvature flow of graphs, J. Reine Angew. Math. 574 (2004), 187-195. MR 2099114 (2005g:53119)
  • 6. Klaus Ecker and Gerhard Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2) 130 (1989), no. 3, 453-471. MR 1025164 (91c:53006)
  • 7. Klaus Ecker and Gerhard Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), no. 3, 547-569. MR 1117150 (92i:53010)
  • 8. Michael Gage and Richard S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69-96. MR 840401 (87m:53003)
  • 9. Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285-314. MR 906392 (89b:53005)
  • 10. Jörg Hättenschweiler, Mean curvature flow of networks with triple junctions in the plane, Diplomarbeit, Zürich: ETH Zürich, Department of Mathematics, 46 pp., 2007.
  • 11. Gerhard Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), no. 1, 285-299. MR 1030675 (90m:53016)
  • 12. Gerhard Huisken, A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), no. 1, 127-133. MR 1656553 (99m:58052)
  • 13. Carlo Mantegazza, Matteo Novaga, and Vincenzo Maria Tortorelli, Motion by curvature of planar networks, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 2, 235-324. MR 2075985 (2005d:53108)
  • 14. William W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900-904. MR 0078836 (17:1252g)
  • 15. John von Neumann, Discussion to `Grain shapes and other metallurgical applications of topology' by C. S. Smith, Metal Interfaces, Amer. Soc. for Metals, Cleveland, Ohio, R. M. Brick (Editor), 1952, pp. 108-110.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C44, 35B40

Retrieve articles in all journals with MSC (2010): 53C44, 35B40


Additional Information

Oliver C. Schnürer
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Address at time of publication: Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany
Email: Oliver.Schnuerer@math.fu-berlin.de, Oliver.Schnuerer@uni-konstanz.de

Abderrahim Azouani
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: azouani@math.fu-berlin.de

Marc Georgi
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: georgi@math.fu-berlin.de

Juliette Hell
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: blanca@math.fu-berlin.de

Nihar Jangle
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: jangle@math.fu-berlin.de

Amos Koeller
Affiliation: Mathematisches Institut der Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Email: akoeller@everest.mathematik.uni-tuebingen.de

Tobias Marxen
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: marxen@math.fu-berlin.de

Sandra Ritthaler
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: ritthale@math.fu-berlin.de

Mariel Sáez
Affiliation: Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
Address at time of publication: Edificio Rolando Chuaqui, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile
Email: mariel@aei.mpg.de, mariel@mat.puc.cl

Felix Schulze
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: Felix.Schulze@math.fu-berlin.de

Brian Smith
Affiliation: Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: bsmith@math.fu-berlin.de

DOI: https://doi.org/10.1090/S0002-9947-2010-04820-2
Keywords: Mean curvature flow, networks, triple junctions.
Received by editor(s): April 29, 2008
Published electronically: December 2, 2010
Additional Notes: Several authors are members of and were supported by SFB 647/B3 “Raum – Zeit – Materie: Singularity structure, long-time behavior and dynamics of solutions of non-linear evolution equations”. The ninth author was supported by the grant “Proyecto Fondecyt de Iniciación 11070025”
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society